
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 37

A STUDY OF LOAD DISTRIBUTION ALGORITHMS IN DISTRIBUTED

SCHEDULING

Shounak Chakraborty
1
, Ajoy Kumar Khan

2

1
Department of Information Technology, Assam University, India

2
Department of Information Technology, Assam University, India

Abstract
As we know that in distributed systems several autonomous computers are interconnected to provide a single coherent view of a

powerful system and these autonomous computers work independently in a team-like fashion such that the domain of tasks is shared

between all of them. Now to take full advantage of this distributed scenario, we need good resource allocation schemes. Load

distribution algorithm’s work is to deliverately distributed and re-distributes the tasks (loads) among all the participating nodes so

that the overall performance of the entire system is maximized. in this paper we study the details of the load distribution algorithms

and their suitableness in various load scenerios.

Keywords: loads, stability, Load balancing, load sharing, location affinity

--***---

1. INTRODUCTION

A distributed scheduler is a resource management component of

a distributed operating system that focuses on judiciously and

transparently redistributing the load of the system among the

individual units to enhance overall performance. Users submit

tasks at their host computers for processing. The need for load

distribution arises in such environments because, due to the

random arrival of tasks and their random CPU service time

requirements, there is a good possibility that several computers

are idle or lightly loaded and some others are heavily loaded,

which would degrade the performance. In real life applications

there is always a possibility that one server or system is idle

while a task is being waited upon at another server. [1]

Let us consider a system of N independent servers and let ρ be

the utilization of each server. Then P=1-ρ is the probability of a

server being idle. The probability P is given by the expression

[1] as following:

P= (Eq. 1.1)

Where is the probability that a given set of i server are idle

and is the probability that a given set of (N-i) servers is

not idle.

Even in a homogeneous distributed system, system

performance can potentially be improved by transferring the

load from the heavily loaded systems (sender) to lightly loaded

systems (receiver). The performance is most often quantified by

average response time of tasks (time interval between

submission and completion of task) in case of distributed

systems. Moreover, resource queue length and CPU queue

length are good indicators of load since they co-relate well with

the task response time. [2]

2. COMPONENTS OF A LOAD DISTRIBUTION

ALGORITHM

2.1 Transfer Policy

Transfer policy indicates when a node (system) is in a suitable

state to participate in a task transfer. The most popular proposed

concept for transfer policy is based on a optimum threshold.

[1], [3], [4], [5]. Thresholds are nothing but units of load. When

a load or task originates in a particular node and the number of

load goes beyond the threshold T, the node becomes a sender

(i.e. the node is overloaded and has additional task(s) that

should be transferred to another node). Similarly, when the

loads at a particular node falls bellow T it becomes a receiver.

2.2 Selection Policy

A selection policy determines which task in the node (selected

by the transfer policy), should be transferred. If the selection

policy fails to find a suitable task in the node, then the transfer

procedure is stopped until the transfer policy indicates that the

site is again a sender. Here there are two approaches viz.: pre-

emptive and non-pre-emptive. Non-pre-emptive the approach is

simple, we select the newly originated task that has caused the

node to be a sender, for migration. But often this is not the best

approach as the overhead incurred in the transfer of task should

be compensated for by the reduction in the response time

realised by the task. Also there are some other factors, firstly

the overhead incurred by the transfer should be minimal (a task

of small size carries less overhead) and secondly, the number of

location dependent system calls made by the selected task

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 38

should be minimal. This phenomenon of location dependency is

called location affinity and must be executed at the node where

the task originated because they use resources such as windows,

or mouse that only exist at the node.

2.3 Location Policy

A location policy decides to which node a task selected for

transfer should be transferred. A widely used method by the

researchers is polling, [1],[3],[4],[5],[6], which involves

querying another node whether it can accept a task to be

transferred to it. The variations are:

 Random: It is a simple dynamic technique where a

task is simply transferred to a random node. Obviously

there is a limit to the number of transfers.

 Threshold: Here polling is done to the node before

task transfer to check its status.

 Shortest: This technique selects the most lightly

loaded node after polling the nodes at random.

2.4 Information Policy

This is responsible for deciding when information about the

other nodes in the system should be collected, where it should

be collected from and what information should be collected.

The variants of this scheme are demand driven, periodic and

state change driven.

2.5 Stability

We first informally describe two views of stability: the queuing

theoretic perspective and the algorithmic perspective.

2.5.1 Queuing Theoretic Perspective

According to the queuing theoretic perspective, when the long-

term arrival rate of work to a system is greater than the rate at

which the system can perform work, the CPU queues grow

without bound. Such a system is termed unstable.[7]

For example we consider a load distribution algorithm

performing excessive message exchanges to collect state

information. The sum of the load due to external work arriving

and the load due to the overhead imposed by the algorithm can

become higher than the service capacity of the system, causing

instability.

We use the effectiveness of an algorithm as the evaluating

criterion. A load distributing algorithm is said to be effective

under a given set of conditions if it improves the performance

relative to that of a system not using load distributing.

2.5.2 The Algorithmic Perspective

If an algorithm can perform fruitless action with finite

probability, the algorithm is said to be unstable. [6] We

consider processor thrashing, the situation where the transfer of

a task to a receiver may increase the receiver’s queue length to

a point of overload, necessitating the transfer of that task to yet

another node. If this process repeats indefinitely then according

to [6] it is unstable.

3. TYPES OF LOAD DISTRIBUTION ALGORITHM

Load distribution algorithms can be categorized according to

the taxonomy introduced by Casavant and Kuhl in [9].

3.1 Classification According to Approach

Load distribution algorithms can be classified as static, dynamic

or adaptive. Static schemes are those when the algorithm uses

some priori information of the system based on which the load

is distributed from one server to another. The disadvantage of

this approach is that it cannot exploit the short term fluctuations

in the system state to improve performance. This is because

static algorithms do not collect the state information of the

system. These algorithms are essentially graph theory driven or

based on some mathematical programming aimed to find a

optimal schedule, which has a minimum cost function. But

unfortunately Gursky has shown that the proble of finding an

optimal schedule for four or more processing elements is NP-

hard.

Dynamic scheduling collect system state information and make

scheduling decisions on these state information. An extra

overhead of collecting and storing system state information is

needed but they yield better performance than static ones.

Dynamic load distribution for homogenous systems was studied

by Livny and Melman in [1], and the scenario of task waiting in

one server and other server being idle was regarded as “wait

and idle” (WI) condition. Significantly for a distributed system

of 20 nodes and having a system load between 0.33 and 0.89,

the probability of WI state is greater than 0.9. Thus, at typical

system loads there is always a potential for improvement in

performance, even when nodes and process arrival rates are

homogeneous. Load sharing facility for large, heterogeneous

system is studied in Utopia [8].

Adaptive load balancing algorithms are a special class of

dynamic load distribution algorithms, in that they adapt their

activities by dynamically changing the parameters of the

algorithm to suit the changing system state.

3.2 Pre-emptive and Non pre-emptive Type

A pre-emptive transfer involves transfer of task which are

partially executed. These transfers are expensive because the

state of the tasks also needs to be transferred to the new

location.

Non pre-emptive transfers involves transfer of tasks which has

not been started. For a system that experiences wide

fluctuations in load and has a high cost for the migration of

partly executed tasks, non pre-emptive transfers are

appropriate.[7]

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 39

3.3 Load Sharing and Load Balancing

Although both type of algorithms strive to reduce the likelihood

of unshared state i.e. wait and idle state, load balancing goes a

step further by attempting to equalize loads at all computers.

Because a load balancing algorithm involves more task

transfers than load sharing algorithms, the higher overhead

incurred by load balancing types may outweigh its potential

improvement.

3.4 Initiation Based

In general the algorithms are also categorized on which node

initiates the load distribution activity. The variations are sender

initiated, receiver initiated or symmetrically initiated (by both

sender and receiver).

A sender initiated algorithm was studied by Eager et. al. in [4]

and a receiver initiated algorithm was studied in [3], where as a

symmetrically initiated algorithm was adopted in [10].

Moreover an adaptive stable symmetrically initiated algorithm

was put forward in [5] and a stable sender initiated algorithm

was discussed in [7].

All the load distribution algorithms are based on one of more of

the types discussed above.

4. COMPARISON AND CONCLUSION

The observations on various kinds of algorithms are as follows:

 Sender initiated algorithms work well in low system

load, but in case of high system load when most of the

nodes are senders they send query to each other

resulting in wastage of CPU cycles and incurring

more delay due to which the system becomes unstable.

 This un-stability happens with receiver initiated

algorithms when the system load is low and most

nodes are receiver.

 For symmetrically initiated algorithms, they cannot

use the previous gathered information and so in

stateless.

 Adaptive algorithms use the previous information to

query a new node and also adjust their threshold

themselves according to the information.

Fig 1: Average response time versus system loads [7]

Based on the performance trends of load sharing algorithms, the

recommendations [11], for selection of a load distribution

algorithm are:

 If the system under consideration never attains high

load, sender-initiated algorithms will give an improved

average response time over no load sharing at all.

 Stable scheduling algorithms are recommended for

systems that can reach high loads. These algorithms

perform better than non-adaptive algorithms for the

following reasons:

a) For overloaded processors are even more

hurled with the extra task of message

handling, in case of sender initiated

algorithms

b) And for the receiver initiated algorithm,

which works well on high loads, but the pre-

emptive transfers are expensive.

 For a system that experiences a wide range of load

fluctuations, the stable symmetrically initiated

scheduling is recommended because it provides

improved performance and stability over entire

spectrum of system loads.

 For a system that experiences wide fluctuations in

loads but has a high cost for the pre-emptive transfers,

a stable sender initiated is recommended.

 For a system that experiences heterogeneous work

arrival, adaptive stable algorithms are preferred.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 40

REFERENCES

[1]. M. Livny and M. Melman, “Load Balancing in

Homogeneous Broadcast Distributed Systems,” Proc. ACM

Computer Network Performance Symp., pp. 47-55, 1982.

[2]. Zhou S., “An Experimental Assesment of Resource Queue

Lengths as Load Indices” Proc. of USENIX, Washington, pp

73-82, 1987.

[3]. D.L. Eager, E.D. Lazowska. and J. Zahorjan, “A

Comparison of Receiver-Initiated and Sender-Initiated

Adaptive Load Sharing,” Performance Evaluation, Vol. 6, No.

1, pp. 53-68, 1986.

[4]. D.L. Eager, E.D. Lazowska, and J. Zahorian, “Adaptive

Load Sharing in Homogeneous Distributed Systems,” IEEE

Trans. Software Eng., Vol. 12. No. 5, pp. 662-675, 1986

[5]. N.G. Shivaratri and P. Krueger. “Two Adaptive Location

Policies for Global Scheduling,” Proc. 10th Int’l Conf.

Distributed Computing Systems. IEEE COMPUTERS, pp. 502-

509, 1990

[6]. Bryant R.M. and R.A. Finkel. “A Stable Distributed

Scheduling Algorithm.” Proc. 2
nd

 Int’l Conference On

Distributed Computing, pp 314-323, 1981

[7]. N.G. Shivaratri, P.Krueger and M.Singhal. "Load

Distributing for Locally Distributed Systems". Proc. of IEEE

Computers, 1992.

[8]. Zhou S., Z.Zheng, J.Wang and P.Delisle, “Utopia: A Load

Sharing Facility for Large Heterogeneous Distributed Computer

Systems”. University of Toronto Press, 1992.

[9]. Casavant T.L. and J.G. Kuhl. “A taxonomy of Scheduling

in General-Purpose Distributed Computing Systems”, IEEE

Transactions on Software Engg., pp. 141-154, 1988

[10]. P. Krueger and M. Livny, “The Diverse Objectives of

Distributed Scheduling Policies.” Proc. 7th Int’l Con&

Distributed Computing Systems, IEEE CS, pp. 242-249, 1987.

[11]. N.G. Shivaratri and M. Singhal. “Advanced Concepts In

Operating Systems”. Tata McGraw Hill Edu. Pvt. Ltd., ISBN:

13:978-0- 07-047268-6, 30
th

 edition, 2012.

