
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 14

BURROWS WHEELER BASED DATA COMPRESSION AND SECURE

TRANSMISSION

M.P.Bhuyan
1
, V.Deka

2
, S.Bordoloi

3

1
Department of Information Technology, Gauhati University

2
Department of Information Technology, Gauhati University

3
Department of Computer Applications, Assam Engineering College

Abstract
Now days, computer technology mostly focusing on storage space and speed With the rapid growing of important data and increased

number of applications, devising new approach for efficient compression and encryption methods are playing a vital role in

performance. In this work, burrows wheeler transformation is introduced for pre processing of the input data and made several

performance analysis experiments over different compression techniques for various types of text files and improved compression

ratio has been found by applying burrows wheeler transform as pre-processing step.

Keywords: RLE, arithmetic, Huffman, LZW, lossless data compression.

--***--

1. INTRODUCTION

It is seen that day by day amount data increases, so it becomes

necessary to optimize the storage space for efficient utilization.

In lossy compression methods, during the decompression

process it is not possible to recover the original file. To

overcome this difficulty we need lossless data compression

technique. Use of lossless data compression technique

reconstructs the original file as it was before the compression.

Lossless data compression is an important compression

technique to compress text files, because removal of much

redundancy in text files causes the change in meaning of the

original data or text. Burrows Wheeler Transform is widely used

in all over the world for lossless data compression [1]. People

have devoted lots of time in innovating new techniques for the

enhancement of lossless data compression algorithm. We will

try to use Burrows Wheeler transform in lossless image

compression and if possible special care can be taken. Further if

possible, we will try to use the technique in the compression of

other kind of files like audio or video files. The rest of the paper

is organized as follows: Section 2 presents a brief explanation

about Burrows Wheeler Transformation; Section 3 discusses

about some existing lossless data compression algorithms,

Section 4 reflects the challenges of combining cryptography and

compression and the cryptographic algorithm, Section 5 has its

focus on comparing the performance of different lossless data

compression algorithms, finally, section 6 concludes the work

and section 7 proposes the future work.

2. BURROWS WHEELER TRANSFORM

Burrows Wheeler Transform is a transformation technique first

introduced in 1994[6], which is the unpublished work by

Wheeler in 1983. The fundamental concept behind this

technique is that when a text file or a character string is

transformed the size of the string does not change. The

transformation only permutes the string into n permutations,

where n is the total number of characters in the string. After

performing Burrows Wheeler Transform new transformed string

can be compressed easily with compression method like run

length encoding. In addition, if move to front encoding is

applied to the transformed data then it can be compressed quite

efficiently.

2.1 The Forward Transform

Consider a string p= dckdacm.

Step1: The original sequence p is copied to the first row, also

referred to as index 0. The sequence is then sorted with all left

cyclic permutations into each next index row. The step 1 of the

BWT is presented in Table 2.1.1

Step2: The rows are sorted lexicographically then from this

output sequences. The step 2 of the BWT is shown in Table

2.1.2. Step 3 is the final step of the BWT process consisting of

output of the BWT and the final index.

Step3: The original sequence p= dckdacm appears in the fifth

row of Table 2.1.2, and the output of the BWT transform is the

last column, indicated by L = ddakmcc which is shown in

table2.1.3.

With the index = 4, the result can be written as BWT = [index,

L], where L is the output of the Burrows-Wheeler transform and

index indicates the location of the original sequence in the

lexicographically ordered sequence. We also determine the first

column F = accddkm, which can be obtained from L by sorting

which is required reverse transform of the BWT.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 15

Table 2.1.1 step1 of BWT with all cyclic permutations

Index Step1 Output

0 dckdacm

1 ckdacmd

2 kdacmdc

3 dacmdck

4 acmdckd

5 cmdckda

6 mdckdac

Table 2.1.2 step2 of BWT rows of step1 are lexicographically

sorted

Index Step3 Output

0 d

1 d

2 a

3 k

4 m

5 c

6 c

Table 2.1.3 step3 of BWT contains last character of each row of

step1

Index Step2 Output

0 acmdckd

1 ckdacmd

2 cmdckda

3 dacmdck

4 dckdacm

5 kdacmdc

6 mdckdac

2.2 The Reverse Burrows-Wheeler Transform:

The BWT is a reversible transformation which can recover the

original sequence from the BWT output sequence. In reverse

transform only the BWT output sequence L and index are

needed for reconstructing the original sequence. To solve the

reverse BWT using output of the BWT, L and index, the reverse

BWT is presented in Table 2.2.1.

Input (ddakmcc, index=4).

Output=dckdacm

Table 2.2.1 Step1 of reverse BWT

Index Reverse

BWT

input

Previous

combine

Sort New combine

(BWT i/p+

Sort)

0 d Φ a da

1 d Φ c dc

2 a Φ c ac

3 k Φ d kd

4 m Φ d md

5 c Φ k ck

6 c Φ m cm

Table 2.2.2 Step2 of reverse BWT

Index Reverse

BWT

input

Previous

combine

Sort New combine

(BWT i/p+

Sort)

0 d da ac dac

1 d dc ck dck

2 a ac cm acm

3 k kd da kda

4 m md dc mdc

5 c ck kd ckd

6 c cm md cmd

Table 2.2.3 Step3 of reverse BWT

Index Reverse

BWT

input

Previous

combine

Sort New combine

(BWT i/p+

Sort)

0 d dac acm dacm

1 d dck ckd dckd

2 a acm cmd acmd

3 k kda dac kdac

4 m mdc dck mdck

5 c ckd kda ckda

6 c cmd mdc cmdc

Table 2.2.4 Step4 of reverse BWT

Index Reverse

BWT

input

Previous

combine

Sort New combine

(BWT i/p+

Sort)

0 d dac acm dacm

1 d dck ckd dckd

2 a acm cmd acmd

3 k kda dac kdac

4 m mdc dck mdck

5 c ckd kda ckda

6 c cmd mdc cmdc

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 16

Table 2.2.5 Step5 of reverse BWT

Ind

ex

Reverse

BWT

input

Previous

combine

Sort New

combine

(BWT i/p+

Sort)

0 d dacmd acmdc dacmdc

1 d dckda ckdac dckdac

2 a acmdc cmdck acmdck

3 k kdacm dacmd kdacmd

4 m mdckd dckda mdckda

5 c ckdac kdacm ckdacm

6 c cmdck mdckd cmdckd

Table 2.2.6 Step6 of reverse BWT

Inde

x

Reverse

BWT

input

Previous

combine

Sort New combine

(BWT i/p+

Sort)

0 d dacmdc acmdck acmdckd

1 d dckdac ckdacm ckdacmd

2 a acmdck cmdckd cmdckda

3 k kdacmd dacmdc dacmdck

4 m mdckda dckdac dckdacm

5 c ckdacm kdacmd kdacmdc

6 c cmdckd mdckda mdckdac

Burrows Wheeler transformation is used in various field of

research from the beginning of its invention, it is seen that the

importance of Burrows Wheeler Transform is increased day by

day. It is widely used as a pre processing stage in lossless data

compression. BWT is used to compress DNA sequencing in the

field of bioinformatics. Research is going on to compress the

medical information or some astronomical images. Due to the

efficiency of BWT, researchers from various backgrounds are

attracted to this technique and use this technique to optimize

their resources. So many people try to improve the BWT

technique for better processing in their own fields. In the

coming days, this technique may overcome the deficiency of

storage space.

3. SOME LOSSLESS DATA COMPRESSION

ALGORITHMS

3.1 Run Length Encoding

Run Length Encoding (RLE) compression technique is used

when a given file contains too many redundant data or long run

of similar characters. The repeated string or characters present

in the input file or message is called a run which is encoded into

two bytes. The first byte represents the value of the character in

the run and the second byte contains the number of times given

character appears in the run. For example the following string

can be represented in RLE as

 ZZZZZZkkkHHHHHttt

 Z6k3H5t3

3.2 Huffman Coding

Huffman coding is a data compression technique in which each

input character is replaced with variable length binary digits

which are called codeword and the codeword has been derived

in a particular way based on the probability of occurrence of

each symbol or character. The most frequent symbols in the

source have the shortest length code and the least frequent

symbol has the longest code. This technique is implemented by

creating a binary tree of nodes. These can be stored in data

structures like array or link list, the size of which depends on the

number of symbols, n.

3.2 Arithmetic Coding

The arithmetic coding concept is to have a probability value 0 to

1, and assign to every symbol a range in between 0 and 1 based

on its probability, higher the probability, higher is the range.

Once we have defined the ranges and the probability, encoding

of symbols can be started, every symbol in encoding process

gives us a new floating point range to encode the next symbol.

3.4 LZW Coding

This is a dictionary based compression algorithm which is

implemented by depending on a dictionary. A dictionary is a

collection of some possible words of a particular language and

is stored in tabular fashion, some indexes are used to represent

repeating symbols. In Lempel-Ziv Welch algorithm or LZW,

one kind dictionary is used to store the symbols. In the

compression process, the index values are used in place of the

similar repeated strings or symbols. Creation of dictionary is a

dynamic process, so it is not transferred with the encoded data,

during decompression the dictionary is created automatically.

4. CHALLENGES OF COMBINING COMPRE-

SSION AND CRYPTOGRAPHY AND THE

CRYPTOGRAPHIC ALOGORITHM USED IN THIS

ANALYSIS

Most of the powerful cryptographic algorithms increase size

after encryption and if we modify the algorithm then strength of

the algorithm decreases. So we need algorithms of the type

stream cipher, substitution cipher etc. One substitution type

algorithm is given below.

Encryption Algorithm:

Step 1: Input Text (T)

Step 2: Check ASCII value of each character

Step 3: If (Character (ASCII value)>127)

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 17

 ASCII value=255-ASCII value of the character

 Else

 ASCII value=127+ASCII value of the character

Step 4: Now print the corresponding character of the ASCII

value in ENCRYPT.txt file.

Decryption Algorithm:

Step1: Check each character of the file ENCRYPT.txt

Step 2: If (Character (ASCII value)>127)

 ASCII value= ASCII value-127

 Else

 ASCII value=255-ASCII value of the character

Step 3: Now print the corresponding character of the ASCII

value in DECRYPT.txt.

5. PERFORMANCE ANALYSIS

The performance analysis of the compression algorithms are

done for different text files of different size. Comparison is done

in terms of compression ratio which is the ratio of the size of

file after compression to the size of file before compression. The

comparison is also shown graphically. Text files of different

size with different characters have been taken and then

compression is done in MATLAB for the different compression

algorithms. The results are shown in the table 5.1 and 5.2. The

following charts showing the comparison graphically for

different algorithms with respect to different text files.

Fig 5.1 Comparison of compressed files in Arithmetic Coding

Fig 5.2 Comparison of compressed files in Huffman Coding

Fig 5.3 Comparison of compressed files in Run Length

Encoding

Fig 5.4 Comparison of compressed files in LZW Coding

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 18

Fig 5.5 Comparison of Average Compression ratio of different

algorithms

From the analysis it is seen that RLE compression has shown

drastic improvement and LZW has shown a little improvement

in the compression ratio after preprocessing with Burrows

Wheeler Transform and encryption. Though the other

compression algorithms have not shown much improvement in

compression ratio after preprocessing with Burrows Wheeler

Transform For the time being RLE has performed much better

with pre-processing with Burrows Wheeler Transform and

encryption.

6. CONCLUSIONS

After doing a detail study on different compression algorithms it

is seen that RLE shows a great improvement on compression

ratio after preprocessing with Burrows Wheeler Transformation.

With these results we can conclude that the combination of

Burrows Wheeler Transform and RLE gives us a best

compression method for lossless data compression.

FUTURE WORK

In future it is possible to apply the same technique to compress

image, audio and video files etc. It is possible to make the

encryption process powerful by using some powerful algorithms

like Blowfish, RC5 etc.

REFERENCES

[1]. B. Balkenhol and S Kurtz. Universal Data Compression

Based on the Burrows-Wheeler Transformation: Theory and

Practice. IEEE transactions on Computers,49(10):1043-1053,

October 2000.

[2]. J. Abel. Improvements to the Burrows-Wheeler

Compression Algorithm: After Bwt Stages. In ACM Trans.

Computer Systems, May 2003

[3]. M. Burrows and D. J. Wheeler. A Block-Sorting Lossless

Data Compression Algorithm Tech. Rep. 124, Digital Systems

Re-search Centre, 1994.

[4]. M. Nelson. Data Compression With the Burrows-Wheeler

Transform. In Dr. Dobbs Journal,, pages 746-751, September

1996.

[5]. Bitla Srinivas and V K Govindan. A Modified Approach to

the New Lossless Data Compression Method International

Journal of Computer Communication Technology (IJCCT),

2(7):44-48, 2011.

[6]. C. Sidney Bums Haitao Guo. Waveform and Image

Compression Using the Burrows Wheeler Transform and the

Wavelet Transform Proceedings, International Conference on

Image Processing, 1:65-68, 1997.

[7]. J. Ziv and A. Lempel. A Universal Algorithm for Sequential

Data Compression IEEE Transactions on Information Theory

IT-23(3):337-343, May 1977.

[8]. K. Holtz and E. Holtz. Lossless Data Compression

Techniques WESCON/94 Conference, Session W23, Advanced

Information Management, Anaheim Convention Centre,

Anaheim, California,, pages 1043-1053, September 1994.

[9]. J. Gilchrist and A. Cuhadar. Parallel Lossless Data

Compression Based on Burrows-Wheeler Transform. 1st

International Conference on Advanced Networking and

Applications (AINA'07), pages 1043-1053, May 2007

[10]. J. Ziv and A. Lempel. Compression of Individual

Sequences Via Variable Rate Coding. IEEE Transactions on

Information Theory, IT- 24(5):530-535, September 1978.

[11]. R.E. Tarjan J.L. Bentley, D.D. Sleator and V.K. Wei. A

Locally Adaptive Data Compression Algorithm

Communications of the ACM, 29(4):320-330, April 1986.

[12]. DI Michael Schindler. A Fast BlockSorting Algorithm for

Lossless Data Compression

[13]. Jer Min Jou and Pei-Yin Chen. A Fast and Efficient

Lossless Data Compression Method IEEE TRANSACTIONS

ON COMMUNICATIONS, 47(9), September 1999.

[14]. M. Effros. Universal Lossless Source Coding With the

Burrows Wheeler Transform. Data Compression Conf.,

Snowbird, UT, pages 178-187, March 1999

[15]. Guy E. Blelloch. Introduction to Data Compression.

Computer Science Department, Carnegie Mellon University,

September 2010.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 19

Table 5.1 Size of different files before and after compression and their compression ratio

File Original

Size(bytes)

Compressed Size(bytes) Compression ratio

Arithmetic Huffman RLE LZW Arithmetic Huffman RLE LZW

File1 134 70 71 127 105 52.52 53.00 94.78 78.36

File2 298 90 92 293 120 30.45 30.87 98.32 40.27

File3 452 251 250 435 296 55.37 55.30 96.24 65.48

File4 892 530 534 810 489 59.47 59.86 90.81 54.82

File5 1092 468 469 611 396 42.86 42.95 55.95 36.26

File6 1937 1300 1308 1856 1059 67.12 67.53 95.82 54.67

File7 2861 1859 1868 2539 1242 64.99 65.29 88.75 43.41

File8 25210 14419 14496 24752 11518 57.40 57.71 98.53 45.69

File9 42080 19360 19688 40232 13099 46.00 46.79 95.61 31.13

File10 50464 22439 22864 49544 15321 44.47 45.31 98.18 30.36

File11 60456 38006 38272 55912 24031 62.87 63.31 92.48 39.75

Avg. 16897.82 8981.09 9082.91 16101.00 6152.36 53.05 53.45 91.41 47.29

Table 5.2 Size of different files before and after compression and their compression ratio after preprocessing with BWT and

encryption

File Original

Size(bytes)

Compressed Size(bytes) Compression ratio

Arithmetic Huffman RLE LZW Arithmetic Huffman RLE LZW

File1 134 70 71 46 108 52.61 52.98 34.32 80.60

File2 298 91 92 88 112 30.49 30.87 29.53 37.58

File3 452 251 250 128 299 55.34 55.30 28.31 66.15

File4 892 530 534 240 468 59.49 59.86 26.90 52.47

File5 1092 469 471 324 369 42.88 43.05 29.67 33.79

File6 1937 1301 1309 689 970 67.13 67.51 35.57 50.08

File7 2861 1859 1868 1120 1145 64.99 65.29 39.15 40.02

File8 25210 14412 14488 6626 9865 57.37 57.68 26.28 39.13

File9 42080 19359 19688 10256 11698 46.01 46.79 24.37 27.80

File10 50464 22430 22864 17440 14493 44.44 45.31 34.56 28.72

File11 60456 38003 38264 19769 19847 62.86 63.29 32.70 32.83

Avg. 16897.82 8979.55 9081.73 5156.91 5397.64 53.06 53.45 31.03 44.47

