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  Abstract 

As mobile devices become ubiquitous, more people and companies are readily adopting the technology to conduct day-to-day 
business, and are increasing the amount of personal data transmitted and stored on these devices. These devices are now part of a 
global infrastructure powering communication and how we do business around the world. In turn, the inherent vulnerabilities are 
becoming an ever more critical topic of interest and challenge as we continue to see a rapid rate of malware development.  This 
paper is a comprehensive survey on a broad view of the growing Android community, its rapidly growing malware attacks, and 
security concerns.  Serving to aid in the continuous challenge of identifying current and future vulnerabilities as well as 
incorporating security strategies against them, this survey will focus primarily on mobile devices (also known as smart phones) 
running the Android mobile operating system between the years of 2007 and 2013. 

Index Terms: mobile, Android, malware, security  
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1. INTRODUCTION 

The fast growth and large popularity of Android powered 
mobile devices has raised a lot of concerns when it comes to 
security. In 2013 it was reported that an approximate of 
550,000 Android powered phones were activated on a daily 
basis [23]. Since its inception, Android was meant to unify 
mobile users with common interfaces, applications, 
Application Programming Interfaces (API’s), simplifying 
the development for a broad audience. With such a far-
reaching platform, the arena for attacks from malware 
developer has become more accessible and increasingly 
enticing. A constantly and rapidly evolving collection of 
malware is entering the mobile software space as thousands 
of malware instances are being detected quarterly [22]. 

People use smart phones for shopping, banking, e-mail, and 
other activities that require passwords and payment 
information. Banks rely on cell phones for two-factor 
authentication. Users may also save authentication and 
payment credentials in text documents on their phones (for 
example, to use the phone as a mobile password manager). 
This makes cell phones a target for credential theft. As of 
2008, bank account credentials, credit card numbers, and e-
mail account passwords were worth $10 to $1,000, $10 to 
$25, and $4 to $30, respectively, on the black market [50]. 
Credentials could be used directly by malware authors for 
greater financial gain, but financial fraud can be difficult to 
perpetrate and requires specialization [50]. 

Legitimate premium-rate phone calls and Short Messaging 
Service (SMS) messages deliver valuable content, such as 

stock quotes, technical support, or adult services. The cost 
of a premium-rate call or SMS is charged to the sender's 
phone bill. Premium rate calls can cost several dollars per 
minute, and premium rate SMS messages can cost several 
dollars per message. Premium-rate calls were abused by 
desktop malware for financial gain in the 1990s and early 
2000s, when computers were connected to dial-up modems. 
Premium-rate SMS messages are stealthier than premium-
rate calls because calls tie up the phone line. In Android, 
malware can completely hide premium-rate SMS messages 
from the user. Premium-rate SMS attacks could feasibly go 
unnoticed untilthe user's next phone bill. 

Twenty-four of 46 pieces of recent mobile malware send 
premium rate SMS messages. For example, an application 
purporting to be a Russian adult video player sent premium-
rate SMS to an adult service [51]. Another piece of 
malware, Geinimi, was set up to send premium SMS 
messages to number specified by remote commands [52]. 
Two of 46 malicious applications place premium-rate phone 
calls. Each of these pieces of malware targets either Android 
or Symbian devices. 

SMS spam has been used for commercial advertising and 
spreading phishing links. Commercial spammers are 
incentivized to use malware to send SMS spam because 
sending SMS spam is illegal in most countries. Sending 
spam from a compromised machine reduces the risk to the 
spammer because it obscures the provenance of the spam. 
Users might not notice the outgoing SMS messages until 
their monthly phone bills arrive. Even then, users with 
unlimited SMS messaging plans may never notice the extra 
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SMS messages. Furthermore, the use of SMS may lend 
more authenticity to spam than e-mail because phone 
contacts are often more intimately acquainted than e-mail 
contacts. 

Many web sites rely on search engines for traffic, which 
makes web site owners desire high visibility in search 
engine results. Search engines rank web sites according to 
how relevant each web site is to a given search term. An 
engine's perception of relevance is influenced by the rate at 
which users click on the web sites returned for a search 
term. A web site will rise in the results for a search term if 
many people search for that term and click on that web site. 
Malware can be employed to improve a web site's ranking 
on search engine results. This type of malware sends web 
requests to the search engine for the target search term. The 
malware then fraudulently "clicks" on the search result that 
corresponds to the target web site. As a result, the website's 
rank for that search term will increase. The value of 
fraudulent search engine optimization depends on how well 
the target site can capitalize on its increased visibility, but 
search engine optimization is a large and lucrative market. 
One recent Android Trojan, ADRD/HongTouTou, performs 
search engine optimization. ADRD was built to boost the 
Baidu search result ranking of a Chinese web site [53]. 
Desktop malware has also been known to fraudulently 
perform search engine optimization. 

Advertisers may be advertising networks when users view 
or click on advertisements. In turn, advertising networks pay 
the web sites that host advertisements. Networks may also 
be chained in a series, with each network relaying the 
advertisement and paying the next one in the series. 
Unscrupulous web sites and advertising networks defraud 
advertisers and non-malicious networks by using desktop 
malware to load and click on advertisements [54, 55]. If 
undetected, click fraud generates a few cents (or even 
dollars) per instance of fraud. The attacker will directly 
benefit from the fraud by receiving some portion of the 
fraudulent payment. An attacker might also launch a click 
fraud attack on advertising competitors. This depletes the 
competitors' advertisement budgets, resulting in more 
legitimate traffic to the attacker's ads. Furthermore, 
competitors may lower their advertising bids after seeing a 
lower return on investment, causing the cost of 
advertisements to go down [56]. Advertising click fraud is 
very similar to search engine optimization fraud. Although 
we are not aware of any mobile malware in the wild that 
performs advertising click fraud, we expect to see it soon. 

Many legitimate applications use advertisements to earn 
money while providing the application to users for free. 
However, malicious applications can take advertising a step 

further with invasive advertising practices. Rather than 
placing advertisements alongside legitimate application 
content, malicious adware will display advertisements when 
the user is interacting with other applications. This could 
significantly interfere with a user's experience with other 
applications. There are two main reasons for an attacker to 
display advertisements with malware. First, the attacker may 
want to advertise goods or services that are illegal or of a 
nature that legitimate advertising companies prohibit (e.g. 
pornography, gambling, endangered species products [57, 
58]).An attacker might do this to advertise his own products 
or to create a black market advertising network for affiliates' 
products. Second, the attacker may simply want to collect 
revenue from displaying legitimate advertisements. The 
attacker may be able to generate more revenue with invasive 
advertising practices by displaying advertisements to users 
more often or in such a way that users accidentally click on 
them. This is not considered click fraud because it 
capitalizes on users' legitimate (albeit accidental) clicks 
instead of automated clicks. However, these invasive 
advertising practices are against legitimate networks' terms 
of service. 

Android and iOS support in-application billing, which 
allows a user to purchase a virtual item from an application 
using the payment account associated with the Android 
Market or Apple App Store. Users can therefore buy items 
such as game credits and music from applications without 
directly providing the application with payment information. 
With its growing popularity, in-application billing could be 
a possible target for the future. First, the implementations of 
in-application billing protocols could include bugs that 
allow malware to charge users for items without their 
approval. Second, malicious applications could use social 
engineering, click jacking, or phishing attacks to trick users 
into accidentally or unknowingly approving in-application 
purchases. For example, iOS sometimes prompts users to 
enter their App Store passwords into windows that hover 
over applications, as part of the in-application billing 
process; these windows are a potential target for phishing 
attacks. Governments may use mobile phones to monitor 
citizens and their activities. Unlike the majority of other 
incentives discussed in this paper, government spying is not 
motivated directly by financial gain. This type of monitoring 
could be performed on a large scale (e.g., China's Internet 
monitoring) or targeted at known dissidents or suspected 
criminals. It could incorporate GPS tracking, audio and 
video recording, monitoring of e-mail and SMS messages, 
and extracting lists of contacts. For example, in 2009 an 
Internet Service Provider (ISP) in the United Arab Emirates 
pushed an “update" to 145,000 Android users that drained 
phone batteries and forwarded copies of e-mails to a 
government server [59]. Similarly, China partnered with 
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eBay to produce and distribute a customized version of 
Skype that censors and tracks users; standard Skype is not 
available for download in China [60]. 

The government threat model is significantly more powerful 
than the criminal threat model. Governments have the ability 
to gain the cooperation of network carriers and device 
manufacturers to manipulate firmware updates, control 
financial markets, and distribute root kits on all devices. 
Permissions, signing, and anti-virus software can be 
circumvented by a government that can corrupt the integrity 
of the operating system. Markets and review processes 
cannot be trusted to filter out government-sponsored 
spyware because governments can compel the responsible 
agencies to publish it. Government agents also can gain 
physical access to targets' phones to install monitoring 
software. Unlike criminals, there is little motivation for a 
government to use arbitrary third party applications to 
spread malware, unless the government was unable to gain 
the cooperation of the necessary corporate parties to launch 
a stronger attack. Governments are more likely to subvert 
smart phone operating systems or modify specific popular 
applications (with the original application no longer 
available). 

To perpetrate distributed Denial of Service (DDoS) attacks, 
botnet owners command large groups of compromised 
machines to simultaneously send requests to servers. DDoS 
attacks can be launched for ransom, amusement, 
cyberwarfare, or as a paid service to others. Traditional 
DDoS attacks are difficult to stop because of their 
distributed nature, but one possible approach is for the 
server to block the IP addresses of visitors that behave 
anomalously. Consequently, each attacking machine is 
limited to a smaller number of fraudulent requests. This 
would not be an effective defense mechanism against 
mobile-based DDoS attacks because cellular networks 
assign new IP addresses as often as every few minutes [61]. 
If that rate of IP assignment is not fast enough, mobile 
malware can force the assignment of a new IP address from 
the cellular network by resetting the data connection [61]. In 
comparison, many desktop machines have static or 
infrequently-changing public IP addresses that cannot be 
forcibly reassigned. Despite this advantage, mobile phones 
also present challenges for DDoS attackers. Mobile phones 
on cellular networks have significantly less bandwidth than 
non-mobile devices. Furthermore, an attacker would need to 
avoid draining the phone's battery too much, limiting a 
mobile device to a few Hypertext Transmission Protocol 
(HTTP) requests every few minutes. We expect to 
eventually see some DDoS malware for mobile phones, but 
not until phones' bandwidth and batteries are improved. 

Apart from DDoS attacks, attackers nowadays are finding 
ways to perpetrate Near Field Communication (NFC) in 
large scale. Mobile phones are beginning to incorporate 
Near FieldCommunication (NFC), which allows short, 
paired transactions with other NFC-enabled devices in close 
proximity. NFC can be used for commerce (i.e., accepting 
credit card transactions), social networking (e.g., sharing 
contact information), device configuration (e.g., 
automatically configuring WiFi), and more. It is predicted 
that mobile payments using NFC will reach $670 billion by 
2015 [62]. 

With growing threat to consumers of the Android powered 
devices, many security agencies and researchers have been 
working to improve and evolve the detection and prevention 
of malware attacks. Detection approaches was something 
that was lacking from the very first release of the Android 
OS. This had a lot to do with the lack of research into the 
area. Detection approaches is an invaluable tool to combat 
malware attacks, a lesson learned from the malware wars on 
PCs. Smartphones are not so different from traditional 
desktop PC’s nowadays, plenty of applications that were 
performed on PC can now be performed on smartphones. So 
they can also suffer from the same weaknesses and 
vulnerabilities as PC’s. It is foresaid that many of 
smartphone malware will follow the same path as PC 
malware as most of technologies needed still exist with 
malware for PC’s [37] 

Also, with the role that the Google powered app store for 
mobile devices, a place where consumers rarely even 
conceived an idea of having malware associated with it. 
With the majority of downloads of mobile applications 
coming from an openly available and centralized app store, 
a new security concern and possible vulnerability has arisen 
that hasn’t been widely experienced in the PC world. This 
possible vulnerability ultimately exposes the great majority 
to of Android users to an easy avenue for malware 
developers to attack. 

This survey will serve to inform the reader of such topics 
related to mobile security, using trends and the evolution of 
the Android mobile platform to cover the topics. The survey 
is intended for all with an interest in mobile security in 
general and with minimal background or knowledge of the 
subject. 

2. BRIEF HISTORY OF ANDROID 

An open source Linux based operating system, Android was 
purchased by Google in 2005[16]. Android was founded 
with the Open Handset Alliance, and finally released for 
mobile devices such as smartphones and sold its first 
smartphone in 2008. Android was also designed to make it 
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easy for developers to program the device in languages such 
as C, C++, and Java. Google also provides a freely available 
software development kit (SDK) to facilitate application 
creation. Android powered devices have grown to be a 
common sight internationally today, leading the global 
smartphone marketplace share for mobile operating systems 
as of early 2013 at approximately 70% [19]. Android has 
seen numerous updates spanning from version 1 through 
4.2.x providing new features, performance boost, design 
changes, as well security patches. 

While Google had means for offering mobile apps from 
almost the beginning, it wasn’t until March of 2012 that they 
transitioned to their current app store, the Google Play store 
[20]. As of early 2013 the primary app store for Android 
Google Play has accumulated over 700,000 apps according 
to its website, easily making it one of the largest mobile app 
stores in the Industry. In late 2012 it was reported that 
approximately 25 billion downloads were made from 
Google Play [21], not considering for all apps downloaded 
from numerous other unofficial app stores and various 
sources. 

3. EVOLUTION AND GROWTH OF ANDROID 

MOBILE MALWARE 

With the enormous popularity and growth of the Android 
platform has seen since its inception, it not surprising that 
it’s become a more lucrative target for malware designers. 
The Android platform is designed to allow developers to use 
core device functionality such as the text messages and the 
calling features [14]. The Android platform debuted on only 
1 phone on one carrier and now is offered on hundreds of 
phone across every major carrier. In recent years the number 
of mobile malware on the Android platform has begun 
alarming security experts and customers alike. During the 
3rd quarter of 2012 a security group F-Secure detected over 
51,000 malware instances an increase by 10 folds from the 
previous 2nd quarter where only approximately 5,000 
instances. Among them only 146 were from the Google Play 
store [22]. 

The growth and adoption rate for Android has seen a 
positive increase since its debut and with 2009-quarter 
estimates from a research company Canalys showing 2.8% 
market share to a dominating 70% in the first quarter in 
2013. Google reported in 2011, that there were 550,000 
activations daily and growing by approximately 4.4% per 
week [23]. It was these kinds of number that attracted such a 
large malware developing community for PCs. Android 
today can be seen used in international communities such as 
South America and China even though China has had 

limited access to Google services including the Google Play 
store. 

The evolution of the Android platform has seen several 
version changes from 1.x when first revealed in 2007 and 
now its latest iterations as of early 2013 codename Jelly 
Bean version 4.x.x. Each version has added new features 
and boasted overall performance as well as closing security 
holes and resolving vulnerabilities. Unfortunately, a slow 
adaption to the latest versions has meant that many of these 
vulnerabilities have remained throughout the updates. A 
sample was taken using data from Google’s Play store to get 
a representative measure on the distribution of different 
currently being used.  

Below is a chart of Android version distribution measured in 
April of 2013 [15]. 
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With the explosive growth and popularity in Android mobile 
devices it has become very clear that mobile security has 
been an ever more important topic. Between August of 2010 
and October of 2011, researchers were able to collect more 
than 1,200 malware samples covering the majority of 
existing Android malware families [2], and the researchers 
evaluated mobile security software. Experimentally, it was 

Version Codename API Distribution 

1.6 Donut 4 0.1% 

2.1 Eclair 7 1.4% 

2.2 Froyo 8 3.1% 

2.3.3-
2.3.7 

Gingerbread 10 34.1% 

3.2 Honeycomb 13 0.1% 

4.03-
4.04 

Ice Cream 
Sandwich 

15 23.3% 

4.1.x Jelly Bean 16 32.3% 

4.2  17 5.6% 
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found that in the best cases 79.6% of the malware in the 
dataset were detected while in the worst cases only 20.2% 
were successful detected. The research finding clearly 
demonstrated the need to improve anti-mobile-malware 
solutions. The research data also pointed out that the 
majority of the malware were not from the official Android 
Market but from alternative sources. The major categories 
the researchers used to classify the different malware 
included Privilege Escalation, Remote Control, Financial 
Charges, Personal Information Stealing. Many of the 
malware collected fit into more than one category. 

The evolution of some of these malwares seems to be 
progressing rapidly. For example the DroidKungFu 
malware, which was initially, detected in the summer of 
2011 and by the 4th quarter, researchers have found 4 other 
versions [2]. As of time of their publication a total of 473 
DroidKungFu variants samples were obtained. This 
demonstrates the rapid development and evolution of 
malware. With growing phone capabilities the kinds of 
malware to look for is also evolving. A proof of concept 
malware named StuxMob was created to demonstrate 
situational-aware malware for targeted attacks [8]. The 
possibility to target mobile devices based on profiles and 
users opens the doors to whole new kind of attacks. Profiles 
based on readings from the devices available sensor 
allowing, for example the phone’s ability to know when a 
user is performing certain activities such as running, 
walking, or even seating down at work. As the capabilities 
of these Android powered devices continue to grow, so does 
the capability of malware. 

4. DETECTION APPROACHES 

When Android OS entered the market in late 2008, detection 
of malware approaches that were used for Android operating 
system were insufficient.  A considerable amount of work 
has been made in the area of malware detection. Several 
approaches as in [39], [40], [41] monitor power usage of 
applications and reports an anomaly in consumption. Other 
techniques [42], [43] use system call monitoring to detect 
unusual system call patterns. There has been significant work 
on the problem of detecting malware on mobile devices. 
Several approaches [39], [40], [41] monitor the power usage 
of applications and report an anomalous consumption. Others 
[42], [43] monitor system calls and attempt to detect unusual 
system call patterns, use more traditional comparison with 
known malware (e.g. [44]) or other heuristics (e.g. [45]).  

The more general field of malware detection is hosted to a 
wider range of approaches. Traditional static analysis 
approaches such as [38], [46], which focus on comparing 
programs with known malware based on the program code, 
looking for signatures using other heuristics. Other 
approaches [47], [48], [49] focus on using machine learning 
and data mining approaches for malware detection. In [49], 
Tesauro et al. train a neural network to detect boot sector 
viruses, based on bytestring trigrams. Schultz et al. [48] 

compare three machine learning algorithms trained on three 
features: DLL and system calls made by the program, strings 
found in the program binary, and a raw hexadecimal 
representation of the binary. In [47], Kolter and Maloof train 
several machine learning algorithms on byte string n-grams.  

The early prototypes of Android malware detection were 
insufficient due to the lack of malware samples for Android 
OS. In those early times, many users of Android were 
developers and tech hobbyists, so they were knowledgeable 
about cybersecurity and risks that were associated with it. 
Because of that, early Android infrastructure did not have 
advance security built-in. The reason of that, Android 
developers were aiming for their operating system to be 
compatible with existing code. 

Since then, Android project have been enhanced by diverse 
developer's ideas that focus on improving: smartphone 
computational capability, high-speed mobile communication 
network, adapting new technological advances, and 
invitations. From Android early development, users had 
access to the Google App store, which is now called Google 
Play. Developers publish applications (commonly called 
apps) for their customers through Google Play. Some of 
these applications are paid, which contribute to the global 
market.  

However, having an online App store for a smartphone was 
not a new idea, but allowing anyone to publish without code 
evaluation was something unique. This idea is the core of the 
open-source movement, and it encourages developers to 
contribute in Android development and populate Google 
Play with applications. Due to the collaborative work that 
initiated Android, the operating system is shipped for free. 
That leads to a smartphone that is powered by Android to 
become increasingly inexpensive and more popular than its 
competitors. Google Inc. embraces openness to its App 
Store, so any developer can upload the application, and also 
that developer can profit from it if he or she chooses. 

In the early years of Android development, Google 
introduced an App store (now called Google Play). Although 
the store was supposedly inherently safer, there are already 
several cases that show that Google Play store is not free 
from malware. Its vulnerability can threaten the end-users, 
and even allow identity theft, which can lead to serious 
consequences due to open source philosophy. 

However, the unsustainable growth of Android phone 
activations led to the number of malware samples increasing 
exponentially [11]. Developers and organizations started 
collecting sufficient samples of Android malwares. Some of 
them shared interesting findings after analyzing those 
samples. There are several proposed ideas to detect malware 
in Google Play store or in the smartphone through malware 
detection. 

4.1 MALWARE DETECTION IN SMARTPHONE 

Android OS has full proper operating system functionality 
because it uses Linux kernel, GNU’s Not Unix (GNU) tool 
chain, and other existing tools in its infrastructure. The 
capabilities of smartphones powered by Android can 
compete with traditional personal computers, but there are 
some drawbacks such as their limited resources. Malware 
detection theories that have been developed for personal 
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computer architecture can be used for smartphones powered 
by Android because its infrastructure supports upward-
compatibility. 

However, many developers are avoiding the use of a 
traditional malware detection theory due to the finite phone 
resources. On personal computer architecture, performing 
exhaustive searches, which requires huge computational 
power, is not a major problem. What is worth a mention is 
that usually computational power has a direct relationship 
with power-consumption. For example, computational power 
has been increased due to application needs, but that also 
means the application is consuming more battery power. 
From a PC point of view, if the malware detection software 
consumes a lot of power, which is fine because PCs are not 
meant to be as portable or mobile and are connected to an 
outlet instead of a battery. That is why almost all malware 
detection that designs for a personal computer uses an 
exhaustive search to detect hosted malwares in the system. 
The reason for this detection design adaptation is, despite its 
huge power-consumption, detection algorithm works 
effectively. 

On the contrary, an efficient detection algorithm and an 
efficient battery usage are a must for a mobile phone.  That is 
why many developers avoid importing an existing work from 
a PC directly to an Android smartphone. The phone battery 
would drain out quickly by just performing an exhaustive 
search to detect malware because the detection method is not 
applicable to lower computing capability and power-limited 
smartphones. Therefore, a malware detection mechanism 
with an efficient and low battery usage is desirable for a 
smartphone powered by Android. 

Before summarizing other people’s works, there is a 
common detail that most of the papers address. When finite 
phone resources and more exhaustive monitoring capability 
create a higher demand on the device, draining the battery 
occurs much faster than expected. However, many 
approaches analyze the low system information, which 
require a complicated sorting and string searching. For 
example, there are Android malwares contain these function 
names:SendTextMessage(),SendMultipartTextMessage(),get
PhoneService, and getCurrentLocation(). In fact, these 
strings are the most used SDK functions by malware, so by 
performing a string search the detector can spot these 
malicious programs. Therefore, the objective of performing 
malware detection in the Android smartphone is an algorithm 
optimization that may provide a less computation time which 
would reduce the power-consumption. 

There are many attempts to provide an efficient detection 
algorithm and an effective battery usage for Android 
smartphones. For example, Forrest has presented typical 
host-based anomaly detection for Android smartphone that 
takes power-consumption into consideration [11]. Host-
based anomaly detection is a way of monitoring system call 
sequence stored in the database. For example, if a program 
behavior has not appeared in a system call sequence 
database, the detector would consider the program as a 
malicious program. After the detector has spotted the 
malicious program, the detector will inform the system to do 
the necessary processes of isolation the malicious program 
[12]. 

Forrest also enhanced and developed his malware detector by 
adding these features: behavioral learning algorithms, finite 
state machines, and hidden Markov chain methods. 
However, despite of these improvements Forrest's malware 
detector lacks the existing semantics of system calls which 
can allow some malware to escape the detection.  There 
should be a runtime trace of application behavior in Android 
framework to overcome Forrest's malware detector 
limitation. 

Forrest is not the only one who developed malware detection 
for Android smartphones. In fact, most of the developed 
malware detectors are using a similar algorithm. Forrest's 
detector algorithm detects malware by comparing program's 
behavior with any malicious activity that malware most 
likely would perform. In other words, if the detector has 
spotted a number of unusual system calls, then the detector 
would label the program as malicious. However, there are 
some malwares that can detect the presence of monitoring 
mechanism (or software) in the phone, so the malware would 
not perform any malicious activities when the detector is 
active. That is when Forrest's malware detector starts missing 
some existing malwares because these malwares would stop 
doing any malicious activities in the device when the 
detection process is in action. 

In [27], a malware detector framework is proposed based on 
permissions of Android applications. This framework uses 
machine-learning techniques to make a decision on whether a 
current application is malware or not. A different machine-
learning framework, Crowdroid [28] is used that recognizes 
Trojan-like malware on Android smartphones. This scheme 
analyzes the number of system calls issued by a particular 
application during the execution of an action requiring user 
interaction. A trojanized application can be detected by 
observing the difference in type and number of times a 
system call is issued. Another example of IDS that relies on 
machine learning techniques is Andromaly [29] which 
observes several parameters monitoring both the smartphone 
and user’s behaviors, spanning from sensors activities to 
CPU usage. In this work, 88 features were used to describe 
observed behaviors, which are further pre-processed using 
feature selection algorithms. The authors developed four 
malicious applications in order to evaluate the ability that 
aided detection of anomalies. [30] described a global 
malware detection approach, MADAM: Multi-Level 
Anomaly Detector for Android Malware that is capable of 
detecting malware contained in unknown applications. This 
detector uses 13 features to detect malware for both kernel 
level and user level. [30] includes framework that consist of 
a monitoring client, Remote Anomaly Detection System 
(RADS) and a visualization component in order to monitor 
smartphones to extract features that can be used in a machine 
learning algorithm to detect anomalies. A behavior-based 
malware detection system (pBMDS) is proposed in [31] that 
use correlation between user’s inputs and system calls in 
order to detect anomalous activities related to SMS/MMS 
sending. A new service named Kirin security service for 
Android is described in [33] and [34] that perform 
lightweight certification of applications to mitigate malware 
at install time. This service uses security rules, which 
matches undesirable properties in security configuration, 
bundled with applications. In [35], a static analysis on the 
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executable to extract functions calls usage is described that 
uses readelf command. Lastly, in [36], some security 
solutions for mobile devices are explained. 

Zhao, Zhang, Ge, and Yuan have proposed a solution to 
monitor system calls in runtime without malwares having the 
ability of noticing the detector presences [11]. They 
developed an application for Android smartphone called 
RobotDroid, which is a software behavior signature, based 
on malware detection framework. What is noticeably 
different from previous approaches, RobotDroid uses an 
active learning algorithm [12]. The previous approaches have 
used a passive learning algorithm, which means after 
collecting the data the detector would perform the necessary 
analysis, but that makes the detector vulnerable for malware 
deceptions, because the hackers can update their malware to 
deceive the passive learning algorithm which is used in the 
malware detector. 

To make sure the detector would not exclude any malware 
from the collected information, the active algorithm would 
stop any unusual activities, and then to record its existence. 
The malware RobotDroid is powered by SVM Active 
learning algorithm, which is an efficient solver for collected 
information in a runtime [12]. 

As a result of enhancing the malware detector, RobotDroid 
can perform a variety of functions: detect broader range of 
malicious software, analyze system calls in runtime, and can 
extend its malware characteristics database dynamically. 
With all of these functions and features, RobotDroid is still 
able to use system power wisely. Zhao, Zhang, Ge, and Yuan 
have tested their detector RobotDroid and experimental 
results show that their method has a good applicability and 
scalability. In fact, RobotDroid can detect a variety of 
popular known as well as unknown malware. It seems that 
monitoring software behavioral activity in Android 
framework is an accurate technique to determine the 
behavior of Android applications. By utilizing what the 
Android system can provide which is detailed and effected 
low level information, but the detection algorithm must be 
optimized. 

Algorithm optimization to reduce a power-consumption has 
addresses new challenges that RobotDroid fulfilled in some 
categories and failed in others. The developers of 
RobotDroid have archived an active detection, which is 
powered by an active learning method and developing 
dynamic database. 

On the other hand, RobotDroid lacks some features. For 
example, the system would always separate the software 
behavioral signature vectors in two sets even if there is no 
malware on it. The reason of that is when RobotDroid detects 
a malicious signature enters into the normal dataset. 
RobotDroid would most likely have inaccurate signature 
sequence mapping for system calls that are detected in the 
system. This issue can lead up to infinite replication, so it 
would require some manual check or further automatic 
analysis. In short, to overcome this problem, RobotDroid 
must always separate the software behavioral signature 
vectors in two sets even if there is no malware on it. In other 
words, these two sets are used to cancel the replication of 
system calls. 

Shabtai has also proposed a detector that has two sets [23]. 
His malware detector spots suspicious temporal patterns as 
malicious behavior. These suspicious temporal patterns are 
known as knowledge-based temporal abstraction. These 
abstractions can be information theft, power exhaust, and 
botnet. However, Shabtai's detection is far from perfection. 
The detector does not secure the user IP. This feature has 
been excluded due to algorithm optimization, but the user 
device is vulnerable to an attacker.   To overcome this 
problem, Shabtai encrypted whole phone information, which 
increased the computational power, and not just for the 
detector, but to the whole phone applications. In the end, his 
detector algorithms are optimized, but the Android network 
security was not enough to protect the user information, so 
he encrypted the whole phone information to be secure. By 
encrypting the whole phone information would definitely 
drain the phone faster.  

Burguera and Zurutuza go deeper than just analyzing system 
calls in the user mode; they did their analysis in the kernel 
mode [24]. By monitoring system call in Android kernel 
level, the system can provide a full control of any system 
call. That means having a better Android security can be 
achieved in the kernel mode. However, in the kernel mode 
doing a mistake can turn the system down because the kernel 
can preempt any process in the system. By using the kernel 
mode, they can generate software behavioral patterns and 
classify these patterns by using cluster algorithms. Their 
approach is successful, but it requires the user to know 
advance topics such as debugging the kernel.    

In summary, all the approaches that have been examined in 
this section are developed for detecting continuous attacks. 
There is still long way to reach the optimal Android 
malware detection because most of this software does not 
have a user-friendly interface. So, even by achieving the 
optimal malware detection for smartphones powered by 
Android have accurate results. There are still long way to 
make it usable for the massive distribution. 

4.2 MALWARE DETECTION IN APP STORE 

Most of these trojanized applications use SDK function call 
executions. Google provides the SDK to help the developers 
avoid Android fragmentation, but standardized API gives 
hackers much broader users to attack. 

Most users trust Google Play and some also trust third-party 
App stores, but the landscape has been changed. The user can 
be affected by cyber-criminality even when downloading 
their Apps from legitimate store such as Google Play. There 
was a study from TrendLabs engineers showing that the user 
still most likely gets affected by trojanized applications by 
using a legitimate store. This pitfall comes from the idea of 
Android embraces openness. 

Needless to say, this type of ecosystem increases 
productivity rapidly, so developers start coding and 
collaborating in every software category. As an open source 
mobile operating system promises commitment to openness 
and opportunity to everybody, developers rushed, and then 
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consumers followed. The number of android activations has 
skyrocketed. 

That is why many big name corporations and industries, such 
as the banking sector, start to publish their application in 
Google Play store for the sake of customers’ convenience.       

Anyone can contribute and upload their applications; also 
someone can even download an existing application, do 
some modifications into the downloaded code, and upload 
the modified version to Google Play. This is the core of open 
source progress and development, but hackers can use this 
protocol for their selfish means. Example, a hacker 
downloads a banking application, inserts malicious codes, 
and then that hacker publishes the malicious application into 
Google Play store as the bank to deceive end-users [10]. 

The trojanized application can infect and victimize a sheer 
number of end-users. That is why there are many ideas and 
invitations to decrease the overwhelming number of victims 
by exploiting the malicious applications without 
jeopardizing the idea of Google Play openness. For 
example, a malware that was in Google Play store, named 
DroidDreamLight. This particular malware has since been 
taken down by Google from Google Play and has been 
deleted from user’s phones, but only after many users fell 
prey. In fact, DroidDreamLight has affected 30,000-120,000 
users in May 2011 by stealing their information and sending 
this stolen information to cybercriminals.  

What is clear from the gathered facts, most malware 
repackaging happens for popular applications. End-users get 
victimized because the applications are desirable to execute. 
Most users do not check if the application that they want to 
install does not have a replica [13]. And many fail to check 
the installation link was emailed to them. Machine learning 
techniques have been widely applied for classifying 
applications mainly focused on generic malware detection 
[1-5]. These classifications can detect repackaged programs 
in an App store. There are several approaches that have been 
proposed to try to classify applications specifying the 
malware class, which are: Trojan, worms, virus, and other 
malware types. For example, Shabtai trained machine-
learning models using as features the count of elements, 
attributes or namespaces of the parsed apk [8]. To evaluate 
their models, they selected features using three selection 
methods: Information Gain, Fisher Score and Chi-Square. 
They obtained 89% of accuracy classifying applications into 
only 2 categories: tools or games. 

A method for classifying Android applications using 
machine-learning techniques can reduce the number of 
victims that download a trojanized program. Other example, 
Sanz, Santos, and Laorden proposed an automatic 
categorization of Android applications [11]. The main 
concept is to provide an automatically characterization for 
different types of applications. By performing automatic 
sorting for the App store's applications, the sorting can be 
empowered by detection mechanism to exploit malicious 
applications. The detection mechanism method that they use 
is a machine-learning technique to represent each 
application to different feature sets, which are:  

        1.   the frequency of occurrence of the printable strings 

 2.   the different permissions of the application itself  

 3.   the permissions of the application extracted from the  
       Google Play  

Vidas and Christin observed that repackaged programs can 
be detected from the App store without restricting how 
developers publish their programs. The way to a secure App 
market is by performing a verification protocol that they 
proposed [13]. They called their method “AppIntegrity,” 
which they claims a proof-of-concept implementation. 
Applications can be authenticated that are offered in an App 
store such as Google Play. The authentication process can 
make it difficult for a repackaged application to reenter the 
App store. Their aim is to perform the minimum 
computational or communication overhead as possible. 

AppIntegrity uses an end-to-end verification protocol to 
reduce the threat of repackaging. Both endpoints developers 
and consumers have an encryption key, and so the 
information that would propagate through the 
communication channel is encrypted. A communication 
channel encryption does not allow a malicious patch to 
attach itself to the program. The encryption method is 
commonly used for personal computers, but because it does 
not consume a lot of power, it can be used for Android 
smartphone. The protocol has been tested on PC’s and 
Android devices, but AppIntegrity can be used to other 
application markets.  

Because AppIntegrity uses an end-to-end verification 
protocol, the implementation cost is reasonable.  Ideally, 
AppIntegrity just needs a minimal network and local 
resource use for constraining a mobile device’s 
environment. The environment can access Google Play or 
other App stores. In fact, AppIntegrity requires no changes 
to the existing Android development process. Minimal 
changes to the Android framework could enhance the ability 
for protection of AppIntegrity users, but even when used 
with the current version of Android, AppIntegrity can 
provide added safety by rapidly uninstalling unverified 
applications, and providing building blocks for future 
protocols and services.  

5. AN APP STORE ACCESSIBLE TO GLOBAL 

CUSTOMERS  

The most popular and widely used Android app store for 
both consumers and developers alike, Google Play store has 
been greatly considered to be the safest place to acquire new 
apps. It’s been a strong belief that users are safe as long as 
their apps are all signed apps from the Google Play store and 
it’s a belief that has held well when looking at the data from 
researchers. But a recent report outlined a critical flaw 
affecting all versions of Android devices vulnerable to 
hackers looking to get full control over your device [25]. 
The flaw allows developers to insert code into digitally 
signed apps, which includes all the apps in the Google Play 
store, and allows them to be turned into potential malware. 
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These digital signatures are what have been used in the past 
to differentiate between safe and unsafe mobile apps for 
Android. Currently, the largest market for Android devices 
is in China and it also accounts for the largest percentage of 
malware attacks [19]. China actually has an un-
proportionally high number of malware attacks compared 
with other markets like the United States and Canada. One 
of the most notable differences between the US and Chinese 
markets are the restrictions on using the official Google Play 
store, forcing many in China to use alternative sources and 
even questionable pirated apps which are not digitally 
signed. It seems that the majority of apps in China are 
downloaded from Chinese app stores or pirate sites [24]. 
This is an observation that helps Google’s argument 
regarding the Play store being relative safe and not a major 
security risk for consumers. But now with the vulnerability 
that affects all signed apps discovered, and no solution yet, 
Google Play customers can realistically see a sharp rise in 
malware attacks to rival the numbers seen in China. 
 
CONCLUSIONS 

Mobile malware are at a rise including those that pose a 
threat to Android users. With the growing potential to cause 
greater harm to its victims, the security threat must be 
answered with an ever more aware community as the 
number of malware seems to only be increasing at an ever 
faster rate. The topics discussed clearly demonstrate the 
existence of the threat and its growing numbers as well as 
some of the existing efforts in response to this threat. While 
the solution to completely curve the threat level cannot be 
derived from this survey, it still serves to inform its audience 
of the threat by bringing forth key topics. Understanding the 
threat and current trends can help to predict to some degree 
the level of danger malware will pose in the near future to 
Android users. 
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