
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 764

 ANDROID MOBILE PLATFORM SECURITY AND MALWARE
SURVEY

 Ameya Nayak1, Tomas Prieto2, Mohammad Alshamlan3, Kang Yen4

 1,2,3,4 Electrical and Computer Engineering Department, Florida International University, Miami, FL, USA

 Abstract

As mobile devices become ubiquitous, more people and companies are readily adopting the technology to conduct day-to-day
business, and are increasing the amount of personal data transmitted and stored on these devices. These devices are now part of a
global infrastructure powering communication and how we do business around the world. In turn, the inherent vulnerabilities are
becoming an ever more critical topic of interest and challenge as we continue to see a rapid rate of malware development. This
paper is a comprehensive survey on a broad view of the growing Android community, its rapidly growing malware attacks, and
security concerns. Serving to aid in the continuous challenge of identifying current and future vulnerabilities as well as
incorporating security strategies against them, this survey will focus primarily on mobile devices (also known as smart phones)
running the Android mobile operating system between the years of 2007 and 2013.

Index Terms: mobile, Android, malware, security

--***--

1. INTRODUCTION

The fast growth and large popularity of Android powered
mobile devices has raised a lot of concerns when it comes to
security. In 2013 it was reported that an approximate of
550,000 Android powered phones were activated on a daily
basis [23]. Since its inception, Android was meant to unify
mobile users with common interfaces, applications,
Application Programming Interfaces (API’s), simplifying
the development for a broad audience. With such a far-
reaching platform, the arena for attacks from malware
developer has become more accessible and increasingly
enticing. A constantly and rapidly evolving collection of
malware is entering the mobile software space as thousands
of malware instances are being detected quarterly [22].

People use smart phones for shopping, banking, e-mail, and
other activities that require passwords and payment
information. Banks rely on cell phones for two-factor
authentication. Users may also save authentication and
payment credentials in text documents on their phones (for
example, to use the phone as a mobile password manager).
This makes cell phones a target for credential theft. As of
2008, bank account credentials, credit card numbers, and e-
mail account passwords were worth $10 to $1,000, $10 to
$25, and $4 to $30, respectively, on the black market [50].
Credentials could be used directly by malware authors for
greater financial gain, but financial fraud can be difficult to
perpetrate and requires specialization [50].

Legitimate premium-rate phone calls and Short Messaging
Service (SMS) messages deliver valuable content, such as

stock quotes, technical support, or adult services. The cost
of a premium-rate call or SMS is charged to the sender's
phone bill. Premium rate calls can cost several dollars per
minute, and premium rate SMS messages can cost several
dollars per message. Premium-rate calls were abused by
desktop malware for financial gain in the 1990s and early
2000s, when computers were connected to dial-up modems.
Premium-rate SMS messages are stealthier than premium-
rate calls because calls tie up the phone line. In Android,
malware can completely hide premium-rate SMS messages
from the user. Premium-rate SMS attacks could feasibly go
unnoticed untilthe user's next phone bill.

Twenty-four of 46 pieces of recent mobile malware send
premium rate SMS messages. For example, an application
purporting to be a Russian adult video player sent premium-
rate SMS to an adult service [51]. Another piece of
malware, Geinimi, was set up to send premium SMS
messages to number specified by remote commands [52].
Two of 46 malicious applications place premium-rate phone
calls. Each of these pieces of malware targets either Android
or Symbian devices.

SMS spam has been used for commercial advertising and
spreading phishing links. Commercial spammers are
incentivized to use malware to send SMS spam because
sending SMS spam is illegal in most countries. Sending
spam from a compromised machine reduces the risk to the
spammer because it obscures the provenance of the spam.
Users might not notice the outgoing SMS messages until
their monthly phone bills arrive. Even then, users with
unlimited SMS messaging plans may never notice the extra

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 765

SMS messages. Furthermore, the use of SMS may lend
more authenticity to spam than e-mail because phone
contacts are often more intimately acquainted than e-mail
contacts.

Many web sites rely on search engines for traffic, which
makes web site owners desire high visibility in search
engine results. Search engines rank web sites according to
how relevant each web site is to a given search term. An
engine's perception of relevance is influenced by the rate at
which users click on the web sites returned for a search
term. A web site will rise in the results for a search term if
many people search for that term and click on that web site.
Malware can be employed to improve a web site's ranking
on search engine results. This type of malware sends web
requests to the search engine for the target search term. The
malware then fraudulently "clicks" on the search result that
corresponds to the target web site. As a result, the website's
rank for that search term will increase. The value of
fraudulent search engine optimization depends on how well
the target site can capitalize on its increased visibility, but
search engine optimization is a large and lucrative market.
One recent Android Trojan, ADRD/HongTouTou, performs
search engine optimization. ADRD was built to boost the
Baidu search result ranking of a Chinese web site [53].
Desktop malware has also been known to fraudulently
perform search engine optimization.

Advertisers may be advertising networks when users view
or click on advertisements. In turn, advertising networks pay
the web sites that host advertisements. Networks may also
be chained in a series, with each network relaying the
advertisement and paying the next one in the series.
Unscrupulous web sites and advertising networks defraud
advertisers and non-malicious networks by using desktop
malware to load and click on advertisements [54, 55]. If
undetected, click fraud generates a few cents (or even
dollars) per instance of fraud. The attacker will directly
benefit from the fraud by receiving some portion of the
fraudulent payment. An attacker might also launch a click
fraud attack on advertising competitors. This depletes the
competitors' advertisement budgets, resulting in more
legitimate traffic to the attacker's ads. Furthermore,
competitors may lower their advertising bids after seeing a
lower return on investment, causing the cost of
advertisements to go down [56]. Advertising click fraud is
very similar to search engine optimization fraud. Although
we are not aware of any mobile malware in the wild that
performs advertising click fraud, we expect to see it soon.

Many legitimate applications use advertisements to earn
money while providing the application to users for free.
However, malicious applications can take advertising a step

further with invasive advertising practices. Rather than
placing advertisements alongside legitimate application
content, malicious adware will display advertisements when
the user is interacting with other applications. This could
significantly interfere with a user's experience with other
applications. There are two main reasons for an attacker to
display advertisements with malware. First, the attacker may
want to advertise goods or services that are illegal or of a
nature that legitimate advertising companies prohibit (e.g.
pornography, gambling, endangered species products [57,
58]).An attacker might do this to advertise his own products
or to create a black market advertising network for affiliates'
products. Second, the attacker may simply want to collect
revenue from displaying legitimate advertisements. The
attacker may be able to generate more revenue with invasive
advertising practices by displaying advertisements to users
more often or in such a way that users accidentally click on
them. This is not considered click fraud because it
capitalizes on users' legitimate (albeit accidental) clicks
instead of automated clicks. However, these invasive
advertising practices are against legitimate networks' terms
of service.

Android and iOS support in-application billing, which
allows a user to purchase a virtual item from an application
using the payment account associated with the Android
Market or Apple App Store. Users can therefore buy items
such as game credits and music from applications without
directly providing the application with payment information.
With its growing popularity, in-application billing could be
a possible target for the future. First, the implementations of
in-application billing protocols could include bugs that
allow malware to charge users for items without their
approval. Second, malicious applications could use social
engineering, click jacking, or phishing attacks to trick users
into accidentally or unknowingly approving in-application
purchases. For example, iOS sometimes prompts users to
enter their App Store passwords into windows that hover
over applications, as part of the in-application billing
process; these windows are a potential target for phishing
attacks. Governments may use mobile phones to monitor
citizens and their activities. Unlike the majority of other
incentives discussed in this paper, government spying is not
motivated directly by financial gain. This type of monitoring
could be performed on a large scale (e.g., China's Internet
monitoring) or targeted at known dissidents or suspected
criminals. It could incorporate GPS tracking, audio and
video recording, monitoring of e-mail and SMS messages,
and extracting lists of contacts. For example, in 2009 an
Internet Service Provider (ISP) in the United Arab Emirates
pushed an “update" to 145,000 Android users that drained
phone batteries and forwarded copies of e-mails to a
government server [59]. Similarly, China partnered with

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 766

eBay to produce and distribute a customized version of
Skype that censors and tracks users; standard Skype is not
available for download in China [60].

The government threat model is significantly more powerful
than the criminal threat model. Governments have the ability
to gain the cooperation of network carriers and device
manufacturers to manipulate firmware updates, control
financial markets, and distribute root kits on all devices.
Permissions, signing, and anti-virus software can be
circumvented by a government that can corrupt the integrity
of the operating system. Markets and review processes
cannot be trusted to filter out government-sponsored
spyware because governments can compel the responsible
agencies to publish it. Government agents also can gain
physical access to targets' phones to install monitoring
software. Unlike criminals, there is little motivation for a
government to use arbitrary third party applications to
spread malware, unless the government was unable to gain
the cooperation of the necessary corporate parties to launch
a stronger attack. Governments are more likely to subvert
smart phone operating systems or modify specific popular
applications (with the original application no longer
available).

To perpetrate distributed Denial of Service (DDoS) attacks,
botnet owners command large groups of compromised
machines to simultaneously send requests to servers. DDoS
attacks can be launched for ransom, amusement,
cyberwarfare, or as a paid service to others. Traditional
DDoS attacks are difficult to stop because of their
distributed nature, but one possible approach is for the
server to block the IP addresses of visitors that behave
anomalously. Consequently, each attacking machine is
limited to a smaller number of fraudulent requests. This
would not be an effective defense mechanism against
mobile-based DDoS attacks because cellular networks
assign new IP addresses as often as every few minutes [61].
If that rate of IP assignment is not fast enough, mobile
malware can force the assignment of a new IP address from
the cellular network by resetting the data connection [61]. In
comparison, many desktop machines have static or
infrequently-changing public IP addresses that cannot be
forcibly reassigned. Despite this advantage, mobile phones
also present challenges for DDoS attackers. Mobile phones
on cellular networks have significantly less bandwidth than
non-mobile devices. Furthermore, an attacker would need to
avoid draining the phone's battery too much, limiting a
mobile device to a few Hypertext Transmission Protocol
(HTTP) requests every few minutes. We expect to
eventually see some DDoS malware for mobile phones, but
not until phones' bandwidth and batteries are improved.

Apart from DDoS attacks, attackers nowadays are finding
ways to perpetrate Near Field Communication (NFC) in
large scale. Mobile phones are beginning to incorporate
Near FieldCommunication (NFC), which allows short,
paired transactions with other NFC-enabled devices in close
proximity. NFC can be used for commerce (i.e., accepting
credit card transactions), social networking (e.g., sharing
contact information), device configuration (e.g.,
automatically configuring WiFi), and more. It is predicted
that mobile payments using NFC will reach $670 billion by
2015 [62].

With growing threat to consumers of the Android powered
devices, many security agencies and researchers have been
working to improve and evolve the detection and prevention
of malware attacks. Detection approaches was something
that was lacking from the very first release of the Android
OS. This had a lot to do with the lack of research into the
area. Detection approaches is an invaluable tool to combat
malware attacks, a lesson learned from the malware wars on
PCs. Smartphones are not so different from traditional
desktop PC’s nowadays, plenty of applications that were
performed on PC can now be performed on smartphones. So
they can also suffer from the same weaknesses and
vulnerabilities as PC’s. It is foresaid that many of
smartphone malware will follow the same path as PC
malware as most of technologies needed still exist with
malware for PC’s [37]

Also, with the role that the Google powered app store for
mobile devices, a place where consumers rarely even
conceived an idea of having malware associated with it.
With the majority of downloads of mobile applications
coming from an openly available and centralized app store,
a new security concern and possible vulnerability has arisen
that hasn’t been widely experienced in the PC world. This
possible vulnerability ultimately exposes the great majority
to of Android users to an easy avenue for malware
developers to attack.

This survey will serve to inform the reader of such topics
related to mobile security, using trends and the evolution of
the Android mobile platform to cover the topics. The survey
is intended for all with an interest in mobile security in
general and with minimal background or knowledge of the
subject.

2. BRIEF HISTORY OF ANDROID

An open source Linux based operating system, Android was
purchased by Google in 2005[16]. Android was founded
with the Open Handset Alliance, and finally released for
mobile devices such as smartphones and sold its first
smartphone in 2008. Android was also designed to make it

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 767

easy for developers to program the device in languages such
as C, C++, and Java. Google also provides a freely available
software development kit (SDK) to facilitate application
creation. Android powered devices have grown to be a
common sight internationally today, leading the global
smartphone marketplace share for mobile operating systems
as of early 2013 at approximately 70% [19]. Android has
seen numerous updates spanning from version 1 through
4.2.x providing new features, performance boost, design
changes, as well security patches.

While Google had means for offering mobile apps from
almost the beginning, it wasn’t until March of 2012 that they
transitioned to their current app store, the Google Play store
[20]. As of early 2013 the primary app store for Android
Google Play has accumulated over 700,000 apps according
to its website, easily making it one of the largest mobile app
stores in the Industry. In late 2012 it was reported that
approximately 25 billion downloads were made from
Google Play [21], not considering for all apps downloaded
from numerous other unofficial app stores and various
sources.

3. EVOLUTION AND GROWTH OF ANDROID

MOBILE MALWARE

With the enormous popularity and growth of the Android
platform has seen since its inception, it not surprising that
it’s become a more lucrative target for malware designers.
The Android platform is designed to allow developers to use
core device functionality such as the text messages and the
calling features [14]. The Android platform debuted on only
1 phone on one carrier and now is offered on hundreds of
phone across every major carrier. In recent years the number
of mobile malware on the Android platform has begun
alarming security experts and customers alike. During the
3rd quarter of 2012 a security group F-Secure detected over
51,000 malware instances an increase by 10 folds from the
previous 2nd quarter where only approximately 5,000
instances. Among them only 146 were from the Google Play
store [22].

The growth and adoption rate for Android has seen a
positive increase since its debut and with 2009-quarter
estimates from a research company Canalys showing 2.8%
market share to a dominating 70% in the first quarter in
2013. Google reported in 2011, that there were 550,000
activations daily and growing by approximately 4.4% per
week [23]. It was these kinds of number that attracted such a
large malware developing community for PCs. Android
today can be seen used in international communities such as
South America and China even though China has had

limited access to Google services including the Google Play
store.

The evolution of the Android platform has seen several
version changes from 1.x when first revealed in 2007 and
now its latest iterations as of early 2013 codename Jelly
Bean version 4.x.x. Each version has added new features
and boasted overall performance as well as closing security
holes and resolving vulnerabilities. Unfortunately, a slow
adaption to the latest versions has meant that many of these
vulnerabilities have remained throughout the updates. A
sample was taken using data from Google’s Play store to get
a representative measure on the distribution of different
currently being used.

Below is a chart of Android version distribution measured in
April of 2013 [15].

 Android Version Distribution

With the explosive growth and popularity in Android mobile
devices it has become very clear that mobile security has
been an ever more important topic. Between August of 2010
and October of 2011, researchers were able to collect more
than 1,200 malware samples covering the majority of
existing Android malware families [2], and the researchers
evaluated mobile security software. Experimentally, it was

Version Codename API Distribution

1.6 Donut 4 0.1%

2.1 Eclair 7 1.4%

2.2 Froyo 8 3.1%

2.3.3-
2.3.7

Gingerbread 10 34.1%

3.2 Honeycomb 13 0.1%

4.03-
4.04

Ice Cream
Sandwich

15 23.3%

4.1.x Jelly Bean 16 32.3%

4.2 17 5.6%

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 768

found that in the best cases 79.6% of the malware in the
dataset were detected while in the worst cases only 20.2%
were successful detected. The research finding clearly
demonstrated the need to improve anti-mobile-malware
solutions. The research data also pointed out that the
majority of the malware were not from the official Android
Market but from alternative sources. The major categories
the researchers used to classify the different malware
included Privilege Escalation, Remote Control, Financial
Charges, Personal Information Stealing. Many of the
malware collected fit into more than one category.

The evolution of some of these malwares seems to be
progressing rapidly. For example the DroidKungFu
malware, which was initially, detected in the summer of
2011 and by the 4th quarter, researchers have found 4 other
versions [2]. As of time of their publication a total of 473
DroidKungFu variants samples were obtained. This
demonstrates the rapid development and evolution of
malware. With growing phone capabilities the kinds of
malware to look for is also evolving. A proof of concept
malware named StuxMob was created to demonstrate
situational-aware malware for targeted attacks [8]. The
possibility to target mobile devices based on profiles and
users opens the doors to whole new kind of attacks. Profiles
based on readings from the devices available sensor
allowing, for example the phone’s ability to know when a
user is performing certain activities such as running,
walking, or even seating down at work. As the capabilities
of these Android powered devices continue to grow, so does
the capability of malware.

4. DETECTION APPROACHES

When Android OS entered the market in late 2008, detection
of malware approaches that were used for Android operating
system were insufficient. A considerable amount of work
has been made in the area of malware detection. Several
approaches as in [39], [40], [41] monitor power usage of
applications and reports an anomaly in consumption. Other
techniques [42], [43] use system call monitoring to detect
unusual system call patterns. There has been significant work
on the problem of detecting malware on mobile devices.
Several approaches [39], [40], [41] monitor the power usage
of applications and report an anomalous consumption. Others
[42], [43] monitor system calls and attempt to detect unusual
system call patterns, use more traditional comparison with
known malware (e.g. [44]) or other heuristics (e.g. [45]).

The more general field of malware detection is hosted to a
wider range of approaches. Traditional static analysis
approaches such as [38], [46], which focus on comparing
programs with known malware based on the program code,
looking for signatures using other heuristics. Other
approaches [47], [48], [49] focus on using machine learning
and data mining approaches for malware detection. In [49],
Tesauro et al. train a neural network to detect boot sector
viruses, based on bytestring trigrams. Schultz et al. [48]

compare three machine learning algorithms trained on three
features: DLL and system calls made by the program, strings
found in the program binary, and a raw hexadecimal
representation of the binary. In [47], Kolter and Maloof train
several machine learning algorithms on byte string n-grams.

The early prototypes of Android malware detection were
insufficient due to the lack of malware samples for Android
OS. In those early times, many users of Android were
developers and tech hobbyists, so they were knowledgeable
about cybersecurity and risks that were associated with it.
Because of that, early Android infrastructure did not have
advance security built-in. The reason of that, Android
developers were aiming for their operating system to be
compatible with existing code.

Since then, Android project have been enhanced by diverse
developer's ideas that focus on improving: smartphone
computational capability, high-speed mobile communication
network, adapting new technological advances, and
invitations. From Android early development, users had
access to the Google App store, which is now called Google
Play. Developers publish applications (commonly called
apps) for their customers through Google Play. Some of
these applications are paid, which contribute to the global
market.

However, having an online App store for a smartphone was
not a new idea, but allowing anyone to publish without code
evaluation was something unique. This idea is the core of the
open-source movement, and it encourages developers to
contribute in Android development and populate Google
Play with applications. Due to the collaborative work that
initiated Android, the operating system is shipped for free.
That leads to a smartphone that is powered by Android to
become increasingly inexpensive and more popular than its
competitors. Google Inc. embraces openness to its App
Store, so any developer can upload the application, and also
that developer can profit from it if he or she chooses.

In the early years of Android development, Google
introduced an App store (now called Google Play). Although
the store was supposedly inherently safer, there are already
several cases that show that Google Play store is not free
from malware. Its vulnerability can threaten the end-users,
and even allow identity theft, which can lead to serious
consequences due to open source philosophy.

However, the unsustainable growth of Android phone
activations led to the number of malware samples increasing
exponentially [11]. Developers and organizations started
collecting sufficient samples of Android malwares. Some of
them shared interesting findings after analyzing those
samples. There are several proposed ideas to detect malware
in Google Play store or in the smartphone through malware
detection.

4.1 MALWARE DETECTION IN SMARTPHONE

Android OS has full proper operating system functionality
because it uses Linux kernel, GNU’s Not Unix (GNU) tool
chain, and other existing tools in its infrastructure. The
capabilities of smartphones powered by Android can
compete with traditional personal computers, but there are
some drawbacks such as their limited resources. Malware
detection theories that have been developed for personal

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 769

computer architecture can be used for smartphones powered
by Android because its infrastructure supports upward-
compatibility.

However, many developers are avoiding the use of a
traditional malware detection theory due to the finite phone
resources. On personal computer architecture, performing
exhaustive searches, which requires huge computational
power, is not a major problem. What is worth a mention is
that usually computational power has a direct relationship
with power-consumption. For example, computational power
has been increased due to application needs, but that also
means the application is consuming more battery power.
From a PC point of view, if the malware detection software
consumes a lot of power, which is fine because PCs are not
meant to be as portable or mobile and are connected to an
outlet instead of a battery. That is why almost all malware
detection that designs for a personal computer uses an
exhaustive search to detect hosted malwares in the system.
The reason for this detection design adaptation is, despite its
huge power-consumption, detection algorithm works
effectively.

On the contrary, an efficient detection algorithm and an
efficient battery usage are a must for a mobile phone. That is
why many developers avoid importing an existing work from
a PC directly to an Android smartphone. The phone battery
would drain out quickly by just performing an exhaustive
search to detect malware because the detection method is not
applicable to lower computing capability and power-limited
smartphones. Therefore, a malware detection mechanism
with an efficient and low battery usage is desirable for a
smartphone powered by Android.

Before summarizing other people’s works, there is a
common detail that most of the papers address. When finite
phone resources and more exhaustive monitoring capability
create a higher demand on the device, draining the battery
occurs much faster than expected. However, many
approaches analyze the low system information, which
require a complicated sorting and string searching. For
example, there are Android malwares contain these function
names:SendTextMessage(),SendMultipartTextMessage(),get
PhoneService, and getCurrentLocation(). In fact, these
strings are the most used SDK functions by malware, so by
performing a string search the detector can spot these
malicious programs. Therefore, the objective of performing
malware detection in the Android smartphone is an algorithm
optimization that may provide a less computation time which
would reduce the power-consumption.

There are many attempts to provide an efficient detection
algorithm and an effective battery usage for Android
smartphones. For example, Forrest has presented typical
host-based anomaly detection for Android smartphone that
takes power-consumption into consideration [11]. Host-
based anomaly detection is a way of monitoring system call
sequence stored in the database. For example, if a program
behavior has not appeared in a system call sequence
database, the detector would consider the program as a
malicious program. After the detector has spotted the
malicious program, the detector will inform the system to do
the necessary processes of isolation the malicious program
[12].

Forrest also enhanced and developed his malware detector by
adding these features: behavioral learning algorithms, finite
state machines, and hidden Markov chain methods.
However, despite of these improvements Forrest's malware
detector lacks the existing semantics of system calls which
can allow some malware to escape the detection. There
should be a runtime trace of application behavior in Android
framework to overcome Forrest's malware detector
limitation.

Forrest is not the only one who developed malware detection
for Android smartphones. In fact, most of the developed
malware detectors are using a similar algorithm. Forrest's
detector algorithm detects malware by comparing program's
behavior with any malicious activity that malware most
likely would perform. In other words, if the detector has
spotted a number of unusual system calls, then the detector
would label the program as malicious. However, there are
some malwares that can detect the presence of monitoring
mechanism (or software) in the phone, so the malware would
not perform any malicious activities when the detector is
active. That is when Forrest's malware detector starts missing
some existing malwares because these malwares would stop
doing any malicious activities in the device when the
detection process is in action.

In [27], a malware detector framework is proposed based on
permissions of Android applications. This framework uses
machine-learning techniques to make a decision on whether a
current application is malware or not. A different machine-
learning framework, Crowdroid [28] is used that recognizes
Trojan-like malware on Android smartphones. This scheme
analyzes the number of system calls issued by a particular
application during the execution of an action requiring user
interaction. A trojanized application can be detected by
observing the difference in type and number of times a
system call is issued. Another example of IDS that relies on
machine learning techniques is Andromaly [29] which
observes several parameters monitoring both the smartphone
and user’s behaviors, spanning from sensors activities to
CPU usage. In this work, 88 features were used to describe
observed behaviors, which are further pre-processed using
feature selection algorithms. The authors developed four
malicious applications in order to evaluate the ability that
aided detection of anomalies. [30] described a global
malware detection approach, MADAM: Multi-Level
Anomaly Detector for Android Malware that is capable of
detecting malware contained in unknown applications. This
detector uses 13 features to detect malware for both kernel
level and user level. [30] includes framework that consist of
a monitoring client, Remote Anomaly Detection System
(RADS) and a visualization component in order to monitor
smartphones to extract features that can be used in a machine
learning algorithm to detect anomalies. A behavior-based
malware detection system (pBMDS) is proposed in [31] that
use correlation between user’s inputs and system calls in
order to detect anomalous activities related to SMS/MMS
sending. A new service named Kirin security service for
Android is described in [33] and [34] that perform
lightweight certification of applications to mitigate malware
at install time. This service uses security rules, which
matches undesirable properties in security configuration,
bundled with applications. In [35], a static analysis on the

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 770

executable to extract functions calls usage is described that
uses readelf command. Lastly, in [36], some security
solutions for mobile devices are explained.

Zhao, Zhang, Ge, and Yuan have proposed a solution to
monitor system calls in runtime without malwares having the
ability of noticing the detector presences [11]. They
developed an application for Android smartphone called
RobotDroid, which is a software behavior signature, based
on malware detection framework. What is noticeably
different from previous approaches, RobotDroid uses an
active learning algorithm [12]. The previous approaches have
used a passive learning algorithm, which means after
collecting the data the detector would perform the necessary
analysis, but that makes the detector vulnerable for malware
deceptions, because the hackers can update their malware to
deceive the passive learning algorithm which is used in the
malware detector.

To make sure the detector would not exclude any malware
from the collected information, the active algorithm would
stop any unusual activities, and then to record its existence.
The malware RobotDroid is powered by SVM Active
learning algorithm, which is an efficient solver for collected
information in a runtime [12].

As a result of enhancing the malware detector, RobotDroid
can perform a variety of functions: detect broader range of
malicious software, analyze system calls in runtime, and can
extend its malware characteristics database dynamically.
With all of these functions and features, RobotDroid is still
able to use system power wisely. Zhao, Zhang, Ge, and Yuan
have tested their detector RobotDroid and experimental
results show that their method has a good applicability and
scalability. In fact, RobotDroid can detect a variety of
popular known as well as unknown malware. It seems that
monitoring software behavioral activity in Android
framework is an accurate technique to determine the
behavior of Android applications. By utilizing what the
Android system can provide which is detailed and effected
low level information, but the detection algorithm must be
optimized.

Algorithm optimization to reduce a power-consumption has
addresses new challenges that RobotDroid fulfilled in some
categories and failed in others. The developers of
RobotDroid have archived an active detection, which is
powered by an active learning method and developing
dynamic database.

On the other hand, RobotDroid lacks some features. For
example, the system would always separate the software
behavioral signature vectors in two sets even if there is no
malware on it. The reason of that is when RobotDroid detects
a malicious signature enters into the normal dataset.
RobotDroid would most likely have inaccurate signature
sequence mapping for system calls that are detected in the
system. This issue can lead up to infinite replication, so it
would require some manual check or further automatic
analysis. In short, to overcome this problem, RobotDroid
must always separate the software behavioral signature
vectors in two sets even if there is no malware on it. In other
words, these two sets are used to cancel the replication of
system calls.

Shabtai has also proposed a detector that has two sets [23].
His malware detector spots suspicious temporal patterns as
malicious behavior. These suspicious temporal patterns are
known as knowledge-based temporal abstraction. These
abstractions can be information theft, power exhaust, and
botnet. However, Shabtai's detection is far from perfection.
The detector does not secure the user IP. This feature has
been excluded due to algorithm optimization, but the user
device is vulnerable to an attacker. To overcome this
problem, Shabtai encrypted whole phone information, which
increased the computational power, and not just for the
detector, but to the whole phone applications. In the end, his
detector algorithms are optimized, but the Android network
security was not enough to protect the user information, so
he encrypted the whole phone information to be secure. By
encrypting the whole phone information would definitely
drain the phone faster.

Burguera and Zurutuza go deeper than just analyzing system
calls in the user mode; they did their analysis in the kernel
mode [24]. By monitoring system call in Android kernel
level, the system can provide a full control of any system
call. That means having a better Android security can be
achieved in the kernel mode. However, in the kernel mode
doing a mistake can turn the system down because the kernel
can preempt any process in the system. By using the kernel
mode, they can generate software behavioral patterns and
classify these patterns by using cluster algorithms. Their
approach is successful, but it requires the user to know
advance topics such as debugging the kernel.

In summary, all the approaches that have been examined in
this section are developed for detecting continuous attacks.
There is still long way to reach the optimal Android
malware detection because most of this software does not
have a user-friendly interface. So, even by achieving the
optimal malware detection for smartphones powered by
Android have accurate results. There are still long way to
make it usable for the massive distribution.

4.2 MALWARE DETECTION IN APP STORE

Most of these trojanized applications use SDK function call
executions. Google provides the SDK to help the developers
avoid Android fragmentation, but standardized API gives
hackers much broader users to attack.

Most users trust Google Play and some also trust third-party
App stores, but the landscape has been changed. The user can
be affected by cyber-criminality even when downloading
their Apps from legitimate store such as Google Play. There
was a study from TrendLabs engineers showing that the user
still most likely gets affected by trojanized applications by
using a legitimate store. This pitfall comes from the idea of
Android embraces openness.

Needless to say, this type of ecosystem increases
productivity rapidly, so developers start coding and
collaborating in every software category. As an open source
mobile operating system promises commitment to openness
and opportunity to everybody, developers rushed, and then

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 771

consumers followed. The number of android activations has
skyrocketed.

That is why many big name corporations and industries, such
as the banking sector, start to publish their application in
Google Play store for the sake of customers’ convenience.

Anyone can contribute and upload their applications; also
someone can even download an existing application, do
some modifications into the downloaded code, and upload
the modified version to Google Play. This is the core of open
source progress and development, but hackers can use this
protocol for their selfish means. Example, a hacker
downloads a banking application, inserts malicious codes,
and then that hacker publishes the malicious application into
Google Play store as the bank to deceive end-users [10].

The trojanized application can infect and victimize a sheer
number of end-users. That is why there are many ideas and
invitations to decrease the overwhelming number of victims
by exploiting the malicious applications without
jeopardizing the idea of Google Play openness. For
example, a malware that was in Google Play store, named
DroidDreamLight. This particular malware has since been
taken down by Google from Google Play and has been
deleted from user’s phones, but only after many users fell
prey. In fact, DroidDreamLight has affected 30,000-120,000
users in May 2011 by stealing their information and sending
this stolen information to cybercriminals.

What is clear from the gathered facts, most malware
repackaging happens for popular applications. End-users get
victimized because the applications are desirable to execute.
Most users do not check if the application that they want to
install does not have a replica [13]. And many fail to check
the installation link was emailed to them. Machine learning
techniques have been widely applied for classifying
applications mainly focused on generic malware detection
[1-5]. These classifications can detect repackaged programs
in an App store. There are several approaches that have been
proposed to try to classify applications specifying the
malware class, which are: Trojan, worms, virus, and other
malware types. For example, Shabtai trained machine-
learning models using as features the count of elements,
attributes or namespaces of the parsed apk [8]. To evaluate
their models, they selected features using three selection
methods: Information Gain, Fisher Score and Chi-Square.
They obtained 89% of accuracy classifying applications into
only 2 categories: tools or games.

A method for classifying Android applications using
machine-learning techniques can reduce the number of
victims that download a trojanized program. Other example,
Sanz, Santos, and Laorden proposed an automatic
categorization of Android applications [11]. The main
concept is to provide an automatically characterization for
different types of applications. By performing automatic
sorting for the App store's applications, the sorting can be
empowered by detection mechanism to exploit malicious
applications. The detection mechanism method that they use
is a machine-learning technique to represent each
application to different feature sets, which are:

 1. the frequency of occurrence of the printable strings

 2. the different permissions of the application itself

 3. the permissions of the application extracted from the
 Google Play

Vidas and Christin observed that repackaged programs can
be detected from the App store without restricting how
developers publish their programs. The way to a secure App
market is by performing a verification protocol that they
proposed [13]. They called their method “AppIntegrity,”
which they claims a proof-of-concept implementation.
Applications can be authenticated that are offered in an App
store such as Google Play. The authentication process can
make it difficult for a repackaged application to reenter the
App store. Their aim is to perform the minimum
computational or communication overhead as possible.

AppIntegrity uses an end-to-end verification protocol to
reduce the threat of repackaging. Both endpoints developers
and consumers have an encryption key, and so the
information that would propagate through the
communication channel is encrypted. A communication
channel encryption does not allow a malicious patch to
attach itself to the program. The encryption method is
commonly used for personal computers, but because it does
not consume a lot of power, it can be used for Android
smartphone. The protocol has been tested on PC’s and
Android devices, but AppIntegrity can be used to other
application markets.

Because AppIntegrity uses an end-to-end verification
protocol, the implementation cost is reasonable. Ideally,
AppIntegrity just needs a minimal network and local
resource use for constraining a mobile device’s
environment. The environment can access Google Play or
other App stores. In fact, AppIntegrity requires no changes
to the existing Android development process. Minimal
changes to the Android framework could enhance the ability
for protection of AppIntegrity users, but even when used
with the current version of Android, AppIntegrity can
provide added safety by rapidly uninstalling unverified
applications, and providing building blocks for future
protocols and services.

5. AN APP STORE ACCESSIBLE TO GLOBAL

CUSTOMERS

The most popular and widely used Android app store for
both consumers and developers alike, Google Play store has
been greatly considered to be the safest place to acquire new
apps. It’s been a strong belief that users are safe as long as
their apps are all signed apps from the Google Play store and
it’s a belief that has held well when looking at the data from
researchers. But a recent report outlined a critical flaw
affecting all versions of Android devices vulnerable to
hackers looking to get full control over your device [25].
The flaw allows developers to insert code into digitally
signed apps, which includes all the apps in the Google Play
store, and allows them to be turned into potential malware.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 772

These digital signatures are what have been used in the past
to differentiate between safe and unsafe mobile apps for
Android. Currently, the largest market for Android devices
is in China and it also accounts for the largest percentage of
malware attacks [19]. China actually has an un-
proportionally high number of malware attacks compared
with other markets like the United States and Canada. One
of the most notable differences between the US and Chinese
markets are the restrictions on using the official Google Play
store, forcing many in China to use alternative sources and
even questionable pirated apps which are not digitally
signed. It seems that the majority of apps in China are
downloaded from Chinese app stores or pirate sites [24].
This is an observation that helps Google’s argument
regarding the Play store being relative safe and not a major
security risk for consumers. But now with the vulnerability
that affects all signed apps discovered, and no solution yet,
Google Play customers can realistically see a sharp rise in
malware attacks to rival the numbers seen in China.

CONCLUSIONS

Mobile malware are at a rise including those that pose a
threat to Android users. With the growing potential to cause
greater harm to its victims, the security threat must be
answered with an ever more aware community as the
number of malware seems to only be increasing at an ever
faster rate. The topics discussed clearly demonstrate the
existence of the threat and its growing numbers as well as
some of the existing efforts in response to this threat. While
the solution to completely curve the threat level cannot be
derived from this survey, it still serves to inform its audience
of the threat by bringing forth key topics. Understanding the
threat and current trends can help to predict to some degree
the level of danger malware will pose in the near future to
Android users.

REFERENCES

[1] M. La Polla et al., “A Survey on Security for Mobile
Devices,” in IEEE Communications Surveys &
Tutorials, VOL. 15, NO. 1, First Quarter 2013

[2] Y. Zhou and X. Jiang, “Dissecting Android Malware:
Characterization and Evolution,” in IEEE Symposium
on Security and Privacy, 2012, p.95-109

[3] J. Li et al., “Android Malware Forensics:
Reconstruction of Malicious Events,” in 32nd
International Conference on Distributed Computing
Systems Workshops, 2012, p. 552-558

[4] D. Wu et al., “DroidMat: Android Malware Detection
through Manifest and API Calls Tracing,” in Seventh
Asia Joint Conference on Information Security,
2012p.62-69

[5] J. Sahs and Latifur Khan, “A Machine Learning
Approach to Android Malware Detection,” in European
Intelligence and Security Informatics Conference, 2012,
p. 141-147

[6] A. P. Felt et al., “A Survey of Mobile Malware in the
Wild,” Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile
devices, 2011, Chicago, Illinois, USA

[7] M. Becher et al., “ Mobile Security Catching Up?
Revealing the Nuts and Bolts of the Security of Mobile
Devices,” in IEEE Symposium on Security and Privacy,
p.96-111, 2011 [doi>10.1109/SP.2011.29]

[8] S. Zawoad et al., (2013) “Poster: StuxMob: A
Situational-Aware Malware for Targeted Attack on
Smart Mobile Devices ,” Available: http://www.ieee-
security.org/TC/SP2013/posters/Shams_Zawoad.pdf

[9] M. Herpich et al., “A trusted ecosystem for Android
applications based on context-aware access control” in
Malicious and Unwanted Software (Malware), 2012, pp
73 - 78

[10] From DroidDreamLight lurks Behind Legitimate
Android Apps:

[11] B. Sanz, I. Santos, C. Laorden, “On the Automatic
Categorisation of Android Applications” in The 9th
Annual IEEE Consumer Communications and
Networking Conference - Security and Content
Protection, 2012

[12] M. Zhao , T. Zhang , F. Ge , and Z. Yuan , “
RobotDroid: A Lightweight Malware
DetectionFramework on Smartphones ,” JOURNAL OF
NETWORKS, VOL. 7, NO. 4, APRIL 2012

[13] T. Vidas and N. Christin, “Sweetening Android Lemon
Markets: Measuring and Combating Malware in
Application Marketplaces ,” ACM, San Antonio, Texas,
USA February 18–20, 2013

[14] Android Overview [Online]
Available:http://www.openhandsetalliance.com/android
_overview.html

[15] Dashboard[Online]
Available:http://developer.android.com/about/dashboar
ds/index.html

[16] Elgin, Ben “Google Buys Android For Its Online
Arsenal” August 2005[Online]
Available:http://www.webcitation.org/5wk7sIvVb

[17] Android Overview[Online]
Available:http://www.openhandsetalliance.com/android
_overview.html

[18] “Announcing the Android 1.0 SDK” September
2008[Online] Available:http://android-
developers.blogspot.in/2008/09/announcing-android-
10-sdk-release-1.html

[19] Lunden, Ingrid “Android, Led By Samsung, Continues
To Storm The Smartphone Market, Pushing A Global
70% Market Share “ July 2013 [Online] Available:
http://techcrunch.com/2013/07/01/android-led-by-
samsung-continues-to-storm-the-smartphone-market-
pushing-a-global-70-market-share/?ncid=tcdaily

[20] Wimberly, Taylor “Android Market is dead, Google
Play takes over starting today” March 2012 [Online]
Available:
http://androidandme.com/2012/03/news/android-
market-is-dead-google-play-takes-over/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 773

[21] Rosenberg, Jamie “Google Play Hits 25 Million
Downloads” September 2012[Online] Available:
http://officialandroid.blogspot.ca/2012/09/google-play-
hits-25-billion-downloads.html

[22] H, Michael, “Android malware perspective: only 0.5%
comes from the Play Store” November 2012[Online]
Available: http://www.phonearena.com/news/Android-
malware-perspective-only-0.5-comes-from-the-Play-
Store_id36696

[23] Kumparak, Greg “Android Now Seeing 550,000
Activations Per Day” July 2011[Online] Available:
http://techcrunch.com/2011/07/14/android-now-seeing-
550000-activations-per-day/

[24] Armasu, Lucien “Wind-up Kinght developer: Piracy
rates on iOS and Android are comparable, China is the
main source”July 2012 [Online]Available:
http://www.androidauthority.com/piracy-rates-are-
higher-ios-android-wind-up-knight-developer-104305/

[25] SANS NewsBites - Volume: XV, Issue: 53 [Online]
Available:
http://www.sans.org/newsletters/newsbites/newsbites.p
hp?vol=15&issue=53&rss=Y#sID201 Available:
http://www.androidauthority.com/piracy-rates-are-
higher-ios-android-wind-up-knight-developer-104305/

[26] SANS NewsBites - Volume: XV, Issue: 53 [Online]
Available:
http://www.sans.org/newsletters/newsbites/newsbites.p
hp?vol=15&issue=53&rss=Y#sID201

[27] Zarni Aung and Win Zaw, “Permission-Based Android
Malware Detection,” INTERNATIONAL JOURNAL
OF SCIENTIFIC & TECHNOLOGY RESEARCH
VOLUME 2, ISSUE 3, MARCH 2013

[28] I. Burguera, U.Z., Nadijm-Tehrani, S.: Crowdroid:
Behavior- Based Malware Detection System for
Android. In: SPSM’11, ACM(October 2011)

[29] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y.
Weiss: Andromaly: a behavioral malware detection
framework for android devices. Journal of Intelligent
Information Systems 38(1) (January 2011) 161-190

[30] G. Dini, F.Martinelli, A. Saracino, D. Sgandurra:
MADAM: a Multi Level Anomaly Detector for
Android Malware

[31] Schmidt, A.D., Peters, F., Lamour, F., Scheel, C.,
Camtepe, s.A., Albayrak, S.: Monitoring smartphones
for anomaly detection. Mob. Netw. Appl. 14(1)(2009)
92-106

[32] Xie,L.,Zhang,X.,Seifert, J.P.,Zhu, S.: pBMDS: a
behavior-based malware detection system for cellphone
devices. In: Proceedings of the Third ACM Conference
on Wireless Network Security, WISEC 2010, Hoboken,
New Jersey, USA, March 22-24 2010, ACM(2010) 37-
48

[33] Enck, W., Ongtang, M., McDaniel, P.: On lightweight
mobile phone application certification. In: CCS ’09:
Proceedings of the 16th ACM conference on Computer
and Communication Security, New York, NY, USA,
ACM (2009) 235-245

[34] Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.:
Semantically Rich Application-Centric Security in
Android. In: Computer Security Applications
Conference, 2009. ACSAC ’09. Annual.(Dec 2009)
340-349

[35] Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J.H.,
Kiraz, O., Yuksel, K.A., Camtepe, S.A., Albayrak, S.:
Static Analysis of Executables for Collaborative
Malware Detection on Android. In Proceedings of IEEE
International Conference on Communications, ICC
2009, Dresden, Germany, 14-18 June 2009, IEEE
(2009) 1-5

[36] La Polla, M., Martinelli, F., Sgandurra, D.: A survey
on security for mobile devices. Communications
Surveys Tutorials, IEEE PP(99) (2012) 1-26

[37] A. Schmidt and S. Albayrak, “Malicious software for
smartphones,” Technische Universität Berlin, DAI-
Labor, Technical Paper, vol. 2, pp. 1–53, 2008.

[38] Mihai Christodorescu and Somesh Jha. Static analysis
of executables to detect malicious patterns. In
Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, SSYM’03, pages
12–12, Berkeley, CA, USA, 2003. USENIX
Association.

 [39] Bryan Dixon, Yifei Jiang, Abhishek Jaiantilal, and
Shivakant Mishra.Location based power analysis to
detect malicious code in smartphones.In Proceedings of
the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, SPSM ’11, pages 27–
32, 2011.

 [40] Hahnsang Kim, Joshua Smith, and Kang G. Shin.
Detecting energygreedy anomalies and mobile malware
variants. In Proceedings of the 6th international
conference on Mobile systems, applications, and
services, MobiSys ’08, pages 239–252, 2008.

 [41] Lei Liu, Guanhua Yan, Xinwen Zhang, and Songqing
Chen. Virusmeter: Preventing your cellphone from
spies. In Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection,
RAID ’09, pages 244–264, 2009.

 [42] Iker Burguera, Urko Zurutuza, and Simin Nadjm-
Tehrani. Crowdroid: behavior-based malware detection
system for android. In Proceeding of the 1st ACM
workshop on Security and privacy in smartphones and
mobile devices, SPSM ’11, pages 15–26, 2011.

 [43] Liang Xie, Xinwen Zhang, Jean-Pierre Seifert, and
Sencun Zhu. pbmds: a behavior-based malware
detection system for cellphone devices. In Proceedings
of the third ACM conference on Wireless network
security, WiSec ’10, pages 37–48, 2010.

 [44] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon
Park. Behavioral detection of malware on mobile
handsets. In Proceedings of the 6th international
conference on Mobile systems, applications, and
services, MobiSys ’08, pages 225–238, 2008.

 [45] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang.
Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 774

Proceedings of the 19th Network and Distributed
System Security Symposium, 2012.

 [46] Raymond W. Lo, Karl N. Levitt, and Ronald A.
Olsson. Mcf: a malicious code filter. Computers &
Security, 14(6):541 – 566, 1995.

 [47] J. Zico Kolter and Marcus A. Maloof. Learning to
detect and classify malicious executables in the wild. J.
Mach. Learn. Res., 7:2721–2744, December 2006

 [48] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and
Salvatore J. Stolfo.Data mining methods for detection
of new malicious executables. In Proceedings of the
2001 IEEE Symposium on Security and Privacy, SP’01,
pages 38–, Washington, DC, USA, 2001. IEEE
Computer Society.

 [49] A. Walenstein, R. Mathur, M.R. Chouchane, and A.
Lakhotia. Normalizing metamorphic malware using
term rewriting. In Source Code Analysis and
Manipulation, 2006. SCAM ’06. Sixth IEEE
International Workshop on, pages 75–84, 2006.

 [50] M. Fossi (Editor). Symantec Report on the
Underground Economy. Symantec Corporation, 2008.

 [51] Juniper Global Threat Center. Fake player.
http://globalthreatcenter.com/?p=1907.

 [52] Symantec. Android.geinimi.
http://www.symantec.com/security_response/writeup.js
p?docid=2011 010111-5403-99

 [53] T. Strazzere. Security Alert: HongTouTou, New
Android Trojan, Found in China. The Lookout Blog,
2011.

 [54] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V.
Paxson. What's Clicking What? Techniques and
Innovations of Today's Clickbots. In DIMVA, 2011.

 [55] N. Daswani and M. Stoppelman. The anatomy of
Clickbot. A. In Proceedings of the first conference on
First Workshop on Hot Topics in Understanding
Botnets, pages 11{11. USENIX Association, 2007.

 [56] N. Daswani, C. Mysen, V. Rao, S. Weis, K.
Gharachorloo, and S. Ghosemajumder. Online
advertising fraud. Crimeware: Understanding New
Attacks and Defenses, 2008.

 [57] Adwords content guidelines.
http://adwords.google.com/support/aw/bin/static.py?hl=
en&guide=28435&page=guide.cs

 [58] Google AdSense Program Policies.

https://www.google.com/adsense/support/bin/answer.py
?answer=48182

 [59] B. Thompson. UAE Blackberry update was spyware.

http://news.bbc.co.uk/2/hi/technology/8161190.stm.

 [60] J. Marko. Surveillance of Skype Messages Found in
China. New York Times, 2008.

 [61] M. Balakrishnan, I. Mohomed, and V.
Ramasubramanian. Where's That Phone? Geolocating
IP Addresses on 3G Networks. In IMC, 2009

 [62] M. Calamia. Mobile payments to surge to $670 billion
by 2015. http://www.mobiledia.com/news/96900.html ,
2011.

