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Abstract
Blind multiuser detection algorithms are used tionélate the Multiple Access Interference (MAI) @ahd Near-Far effect in mobile
communication systems. Four kinds of blind multiudetection algorithms applied teode-division multiple-acces€CDMA)
communication system are studied in this paper.s&halgorithms are the Least Mean Squares (LMS)uRe@ Least Squares
(RLS), Kalman filter and subspace-based Kalmaerfdigorithms. The resultant signal to interferematio (SIR) at the output of the
receivers controlled by the four kinds of multitudetection algorithm has been discussed in thigepaSimulation results show that
the subspace based Kalman filter algorithm outgenfo all other three algorithms. Subspace-based Kalfilter algorithm has

faster convergence speed, more practical and tpaluitity of CDMA system can be increased.

Keywords: Blind multiuser detection, Code-division multiplecass, Mean output energy, Adaptive filtering.
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1. INTRODUCTION

Direct-sequence code-division multiple-access (ZBv3)
has been widely studied in the literatures. Regeaillaptive
interference suppression techniqgues based on medtiu
detection have been considered as powerful metHods
increasing the quality, capacity, and coverage &Ma
systems [1].

The mitigation of MAI in CDMA systems is a probleof

continuing interest since MAI is the dominant impaént for

CDMA systems. It is widely recognized that MAI esigven
in perfect power-controlled CDMA systems [2]. Mublier

detectors perform better than the conventionalaieteunder
all power distributions, except in pathological esssuch as
the decorrelating detector in extremely low sigt@lnoise
ratio (SNR) [2]. Therefore, multiuser detectionnist only a
solution to the near-far problem but is also usefugn with

power control.

In order to successfully eliminate the MAI and détéhe
desired user’s information bits, one or more offtiiwing is
usually required at the receiver end:

1) Spreading waveform of the desired user;

2) Spreading waveforms of the interfering users;

3) Propagation delay (timing) of the desired user;

4) Propagation delays of the interfering users;

5) Received amplitudes of the interfering userka(ree to that
of the desired user);

6) Training data sequences for every active user

The “blind” adaptive multiuser detectors requirelyothe
knowledge of (1) and (3), which is, the same knalgkeas the
conventional receiver.

Previous work on blind adaptive multiuser detectidetes
back to a 1995 paper by Honig et al. [3], who di&hbd a
canonical representation for blind multiuser deiecand used
stochastic gradient algorithms such as LMS to immglet the
blind adaptive mean output energy (MOE) detectys.
elegantly shown by Roy [4], the blind adaptive M@&ector
has a smaller eigenvalue spread than the trairsgd
adaptive LMS detector; hence, the blind LMS alduonit
always provides (nominally) faster convergence tithe
training driven LMS-MMSE receiver but at the cost o
increased tap-weight fluctuation or misadjustment.

It is well-known that the RLS algorithm and the Kain

filtering algorithm are better than the LMS algbnt in

convergence rate and tracking capability [2]. Usitige

exponentially weighted sum of error squares cosction,

Chen and Roy [5] proposed an RLS algorithm thatiireg the

knowledge of (1)-(4) and, thus, is not a blind nuskr

detector. Later, Poor and Wang [6] proposed an resmpibally

windowed RLS algorithm for blind multiuser detectio
requiring only the knowledge of (1) and (3).

On the other hand, the RLS is a special case oK#iman
filter [7], [8], whereas the Kalman filter is knowto be a
linear minimum variance state estimator [7], [9]dafi0].
Motivated probably by these two facts, some attenthas
been focused on Kalman filter-based adaptive maétiu
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detection [11]-[15]. In particular, it is shown]it3] that when
applied in an asynchronous CDMA system, the RL8rélgm
performs more poorly than the more general Kalmidarf
algorithm.

Zhang and Wei [2] proposed a simple and effectiaeesspace
model for the multiuser detection problem in aistary or
slowly fading channel and employed Kalman filter thg
adaptive algorithm. Compared with the LMS approackB]
and the RLS approach in [6], this detector dematestriower
steady-state excess output energy in adaptatioerebtingly,
though the state space model for the Kalman filies devised
under a time-invariant assumption, the resultingoathm
could work well in a slowly time-varying environnten

Motivated by the signal subspace concept in [1BpWZet al.
[17] proposed a modified version of this blind atileg
multiuser detector by modeling the detector asa@oven the
signal subspace and employing a Kalman filter iy
similar to that in [2] to derive the coefficientdaptively.

Compared with the full-rank approach in [2], despi#fome
similarity in the state-space model, this new sabsgbased
multiuser detector has some significantly importamerits.
First it has lower computational complexity and téas
convergence rate in terms of SIR. Secondly, it éssl
conditioned on some system parameters such asetieed
users’ signal amplitude than the full-rank methtialis it is a
blind detection method in a more strict sense. faidally, the
detection effectiveness is maintained both in &dgiGaussian
noise channels and in slowly time-varying Raylefglding
channels. In a dynamical system where users cer end
leave at random, the structure of the signal sutssjig also
time-varying. In this case a subspace tracking rdtgo is
seamlessly integrated into the proposed detectaratk the
changes and provide an online estimation of thenasig
subspace.

To this end; this paperpresents and comparesthe fou

mentioned algorithms.Their performances in the cdssatic

and dynamic channels are presented and comments are

provided to fulfill the comparative study.

2. SIGNAL MODEL

Consider an antipodal K-user synchronous DS-CDM#tean
signaling through an additive white Gaussian naisannel.
By passing through a chip-matched filter, followsda chip-
rate sampler, the discrete-time output of the keeduring
one symbol interval can be modeled as

K
r(m) = ) A Ws() + ov(), (m)
k=1

Where

v(n)ambient channel noise;

Knumber of users;

A, received amplitude of tHd" user;

b, (n)information symbol sequence from tieuser,
chosen independentlyand equally from {-1,+1} ;
s, (n)signature waveform of thed" user;

It is assumed thst(n) is supported only on the
interval0, T; — 1],

Where

T, = NT, symbol interval,

T.chip interval;

Nprocessing gain.

Defining

r(n) = [r(0),r(1), .., r(N —D]7
v(n) = [v(0),v(D),...,v(N — D]" 2)

We can express (1) in vector form

K
r() = Ay (s, + ) A sy + v (3)
k=2

Where

s = (1/VN)[5(0),5,(1), ..., s, (N — D]Tis  the  code
sequence assigned to #ituser.

For convenience, we will assume that the desired isk=1.

It is well known that any linear multiuser detecfor user 1
can be characterized by the tap-weight vectgn) such that
the decision om, (n)during then™ symbol interval is given by

b, () = sgn((cy, 1)) = sgn(c], r()) (4
Where(a, b) denotes the dot product of the vectayp

3.BLIND ADAPTIVE MULTIUSER DETECTORS
3.1Blind LM S Multiuser Detector

The canonical representation of a linear blind #dep
multiuser detector for user 1 was firstly estal@ish3] as
follows:

ci(n) =s; +x,(n)(5)
Subject to

(s1,%1) =0 (6)
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Wheres, is the spreading vector of the first user apth) is
the adaptive part of the detector. By minimizin/®E cost
function of the form.

MOE(c,) = E{(r,¢,)*} (7)

Honig et al. [3] have proposed a blind LMS basepgathm to
update the adaptive

x1(n) = x;(n — 1) — uz)[r(n) — zur(n)s,1(8)

Where(n) = (r(n),s; + x,(n — 1))is the output of the
detectorz,(n) = (r(n), s,)is the output of the conventional
matched-filter, anduis the step-size that controls the
adaptation speed. The step size is given by (7(3]irvhen
implementing the LMS algorithm, the step-size msatisfy
the stability condition of convergence of output BAS

2

<L—7——— 9
WSS 424 No? )

3.2Blind RLS Multiuser Detector

Using the minimum output energy criterion, Poor aieng
[6] proposed a RLS algorithm for blind multiusertetgion.
The exponentially windowed RLS algorithm selects th
weight vector to minimize the sum of exponentiallgighted
output energy, namely

n

minimizez (T (W) (n))> (10

i=1
Subject to
sie;(m) =1 (11)

Wherd) < A4 > 1 is the forgetting factor. The solution to this
constrained optimization problem yields the linddMSE
detector, which is given by [4], [11]

R—l
) = S (12)
Where
R(n) = Z =i ()T () (13)

i=1

A recursive procedure for(n)updating can be obtained as
follows:

., R'(n-Drm
k() & T R () a9

h(n) £ R 1(n)s, =

%[h(n - 1) —k(mrT(m)h(n — 1] (15)
1
c(n) = mh(n) (16)
R i(n) = %[R‘l(n - D -kmr" MR (n-1] (17)

3.3 Blind Multiuser Detection Based on Kalman
Filtering

In [2], Zhang et al. have proposed to use an atera
standard representation for the blind adaptive i€t
detector:

c1(n) =51 — Cypuuw:1(n) (18)

Where the columns of thé x N- 1 matrixC, ,,,,;;Span the null
space of, i.e

Sfcl,null =0 (19)

It should be noted thdt, ,,,,;;can be pre-computed off-line via
one of many orthogonalization procedures such esGiam-
Schmidt orthogonalization. Unlike (5), the adaptipart
w; (n)in (18) is now of sizeN — 1) x 1 and has the advantage
of being unconstraint. Let us define the outputhef detector
as follows:

z(n) = ci(Mr(n) (20)

Then z(n)has zero-mean and its variance is given by
Paragraph comes content here.

E{z?(n)} = MOE (¢, (n)) = MSE(c,(n)) + A? (21)
Thus, when the detector is optimal (i.®SE (c;(n)) attains
its MMSE value), the variance of(n)corresponds to the
minimum MOE and is dominated by the power of theirel
userA?.

Substituting (18) in (20) yields
z(n) = sir(n) — " (W Cy puuw: (1) (22)
Put zyp(n) =sir(mand d'(n) =r"(n)Cypyy. If

wjachievew,,.,, then (22) can be rewritten as the following
measurement equation:

Zyr (M) = dT (MW, () + 2(0) (23)
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If the detector is assumed to be time-invariang can write:
Woptl(n) = Waptl(n - 1) (24)

As (23) and (24) define a state-space representatiothe
adaptive part of the detector, Kalman filtering mskit
possible to recursively updaneg(n)[2].

g(n) = K(n,n — 1)d(n)
X [dT (Km0 = Dd(n) + éminl ™ (25)

Kn+1,n)=K(nn-1)
—g(m)d" (MK (n,n - 1) (26)

Woptl n) = Woptl(n -1
+g (M) [zyr () — d" (MW (n = D] (27)

ci(n) =s; — Cl,nullwoptl(n) (28)

Whereg(n) is (N-1)x1 Kalman gain vectork(n + 1,n) is
(N-1)x(N-1) correlation matrix of predicted state errodan
Emin = MOE(c,(n)) is the minimum MOE of the dynamical
system of user 1. The initial valiirg,;; (0) = 0andK(1,0) =

I

3.4 Subspace-based Blind Multiuser Detector using
Kalman Filter

Based on the signal model (3) and the associatipendent
assumptions, the autocorrelation matrix of the ivecksignal
r(n)can be expressed as

K
R=E{Fmrn)T}= Z Als, st + 0%l
k=1
= SAST + oI, (29)

Where § = [s;s, ... sg] denotes the signature matrix, and
A =diag(A24% .. A%Z) denotes the diagonal matrix of the
signal amplitude. On the other hand, applying agemie
composition to the matriR yields

R=UAUT = U ,AUT + U,A, U, (30)
where U=[U; U,], A =diag(4d; Ap). A =
diag(A42, ... Ag) contains theK largest eigenvalues @in

descending order, andU,contains the corresponding
orthonormal eigenvectord,, = o2I,_,contains anothek—-K
eigenvalues ofRand U, contains the corresponding—K
orthonormal eigenvectors. The column vectordJpfandU,,
span two orthogonal subspaces, namely, the sigrmpsce
and the noise subspace viifhJ,, = 0.

In [17], Zhou et al. have proposed a new blind #dap
multiuser detection scheme based on a hybrid ofmidalfilter
and subspace estimation. The detector can be egutes an
anchored signal in the signal subspace as follows

€, = 81+ SiuWs (31)
Subject to
cls; =1 (32)

Where the column vectors of the matfisq s1,,,,,;] COMpose
the signal subspace basis set amgs a weight vector.
Now,s1n; its columns span the null spacesgf i.e.

s'Simuu =0, and they are orthonormal, i.€},,,;S1nun =

Ix_, . Sinces;is assumed to be known anqg,,;can be
obtained, for example, by applying eigenvalue dquusition
(EVD) to the autocorrelation matix

In order to find the optimal weight vectar;that minimizes
the MAI. It is demonstrated this vector can bersated by
using the Kalman filter method [2]. The Subspacdm&am
blind adaptive algorithm is summarized in Table-1.

Table-1: Subspace-Based Kalman Filtering Estimation for
Blind Multiuser Detection

Step 1:

Signal Subspace Estimation:

*Compute autocorrelation matri for a batch of J
symbols

* Perform eigenvalue decomposition Rf
R=UAUT =UAUT +U,A, U

* From matrix
Z = [Sl ul . uK_l]
where
u; is thei™ column vector olU, Vi =1, ..., K — 1

* Apply Gram-Schmidt method aZi to obtain an
orthonormal matrix

Y =[s1y1 . Yr-1]

* Let

Stnun = [Y1 - V-1l
be the null signal subspacesgf

Step 2:
Kalman Filtering Estimation in Symbol-rate Adapdaiti
*Forn=1, 2, ...
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* Implement Kalman filter algorithm according to
(25)-(27)

* Signal detection
C%\(n) =5 + Slnullwaptl(n)
by (n) = sgn(ci(n),r(n))

* End

4. COMPUTATION COMPLEXITY

We now compare the computational complexity of L{8%
RLS [6], Kalman [2], and Subspace Kalman blind aivap
algorithms [17]. The computational complexities fafur
algorithms are compared in term of the number of
multiplications and additions per adaptation itieraias shown

in Table-2.

Table-1: Comparison of Computational Complexity

Algorithm Computational
Complexity
LMS algorithm [3] OoN)
RLS algorithm [6] OKP)
Kalman filtering algorithm [2] aw)
Subspace Kalman filtering
algorithm [17] O(NK)

Generally, N>>K; thus, Subspace Kalman has much less
computational complexity than the RLS and Kalmadiering
algorithms.

5. SIMULATION RESULTS
In this section, several simulation results thahpare among

the four algorithms for blind multiuser detectiare @resented.

As a figure of merit for assessing the MAI suppi@ss
capability of the blind LMS, RLS, Kalman filteringand
subspace-based Kalman filtering algorithms, the etim
averaged SIR (in decibels) at thiBiteration is given by [3]

Zi”il(CL(n)sl)z

M el () (ry(n) — by (n)sy)’

SIR(n) = 10log (33)

WhereM is the number of independent runs, and the subscript
l indicates that the associated variable dependsthen
particular run. All signal energies are given ictibels relative

to the background noise variane®, i.e., the SNR of usek is
defined bySNR = 10log(E,/0?), whereE, = A2 is the bit
energy of usek. In all simulations, user 1 is assumed to be
the desired user that has the unit enetfy= 1 and arSNRof

20 dB (i.e.,0? = 0.01), and the processing gavi = 31. In

the following, the data in each plot are the averager 500
independent runs.

5.1 Conver gence Rate Comparison

In Example 1, DS-CDMA systems in a Gaussian chaarel
simulated, and there are nine multiple-accessfariag users
among which five users have an SNR of 30 dB eduleet
users have SNR of 40 dB each, and another usearh&\NR
of 50 dB, i.e. 4% = ... = A2 = 10, A2 = A% = 4% = 100, and
A2, =1000. Then, from (9), it follows that the step size
should satisfyu < 1.47 x 1073, and thuspu = 3 x 10~*was
used in the LMS algorithm. When applying the RLS
algorithm, the initial valu®~1(0) = 6~ Itakess = 0.01, and
the forgetting factoi = 0.997 is taken. In Kalman filtering,
we used, the estimafg,;,, = 1in (25),

The time-averaged SIR versus iteration numbergHerfour
algorithms is plotted in Fig. 1. It is seen that ferformance
of the subspace-based Kalman filtering algorithniperform
the rest. Whem is sufficiently large subspace-based Kalman
filtering algorithm approach SNR=19dB. This meanat tthe
MAI in the SIR has been eliminated almost compietel
However, note that the subspace-based algorithieahthis
near-optimum performance at a significantly reduced
computational complexity compared with the fullkan
algorithm. Fig. 2 shows the mean square error (\\83us
iteration number (time) for the four algorithms heg in a
synchronous CDMA system. The most slow algorithnthis
LMS while the other three algorithms reach the mimin
MSE faster than LMS.
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Fig-1: Time-averaged SIR versus time for 500 runs when
using the four algorithms to a synchronous CDMAsys
with processing gaill = 31.
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Fig-2: MSE versus time for 500 runs when using the four
algorithms to a synchronous CDMA system with preoes
gainN = 31.

5.2 Tracking Dynamical Environment

In Example 2, we compare the tracking capabilitiésthe
LMS, RLS, Kalman filtering, and subspace-based kaim
filtering algorithms in a dynamical environment lid time-
varying number of users for DS-CDMA systems in ai§aéan
channel. When n < 600, the configuration is the same as
Example 1. Atn = 600, three interfering users with SNR of
40 dB are added to the CDMA system at the same. tikhe
n = 1200, four interfering users with SNR of 40 dB and one
interfering user with SNR of 50 dB are removed frtime
system. The subspace-based Kalman filter use piajec
approximation subspace tracking with deflation (FAB
algorithm to track the rank and signal subspaceh wiite
forgetting factor § = 0.997. Fig. 3 show the tracking
behaviors of the four blind adaptive algorithms @
synchronous system.

In Fig. 3, It is also seen that the Kalman filtesicks faster
than the subspace approaches due to the reasoim ttz
subspace tracking strategy, the subspace-basedittatgo
includes two adaptation phases, that is, adaptikespace
tracking and then adaptive signal detection, wiethe full-
rank detector includes only one adaptation phase.
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lteration Number

Fig-3: Time-averaged SIR versus time for 500 runs when
using the four algorithms to a synchronous CDMAtalys
with processing gaiil = 31 and the time-varying number of
users.

5.3 Slowly Time-Varying Environment

Example 3 is a synchronous DS-CDMA system in a &ghl
fading channel. We assume a single-path Rayleidimda
channel with a Doppler frequency of 22 Hz, whiclolgained
based on Jakesmodel [18]. The signal model is egpreby

K
) = ) A s, () + ov(n), (34)
= n=01,..,T,—1

Whereh, is the channel coefficient for tHd" user and is a
random variable following Rayleigh distribution The
convergence curves for the subspace-based Kalrten the
Kalman filter and the RLS are plotted in Fig. 4.eTlkesults
show that all algorithms can track the slow channel
fluctuation, and the subspace-based Kalman filjedatector
still yields better performance than the other tdeiectors.
The MSE curves of the three algorithms are showhign 5.
The curves show that all of them have the sameuakierror
while the subspace-based Kalman filter is the fastgrithm.

5.4 BER Performance Comparison

In Example 4, we evaluate the BER performance efftur
algorithms versus SNR in Rayleigh fading channéle t
configuration is the same as Example 1. The receipecess
10000 symbols and averaged over 100 independestfoumll
BER simulations. The results in Fig. 6 indicate ttllae
subspace-based Kalman filter and the full-rank Kedm
filtering algorithms outperform the RLS and LMS alghms.

The performance of the subspace-based Kalman filter
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algorithm is close to the Kalman filtering algorithbut with
much lower complexity.
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Fig-4: Time-averaged SIR versus time for 500 runs when

using the three algorithms with= 0.997 to a synchronous

CDMA system in Rayleigh fading channel; the prooegs
gain isN = 31.
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Fig-5: MSE versus time for 500 runs when using the three
algorithms withA = 0.997 to a synchronous CDMA system in
Rayleigh fading channel; the processing gaiN s 31.
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Fig-6: BER versus SNR for 100 runs when using the four
algorithms to a synchronous CDMA system in Rayleigh
fading channel.

CONCLUSIONS

In this paper, we have analyzed the SIR and MStprance
of four blind-adaptive algorithms. Subspace-baseaimén
filter has near-far resistant, lower computatiooamplexity,
and better convergence performance compared wibthen
algorithms. It is effective in both AWGN channeldaslowly
time-varying Rayleigh-fading channel. It is also bdind
detection method in a stricter sense because itess
conditioned on the knowledge of the signal ampétud the
desired user. Adaptation in the dynamic environmaith
variable number of users is enabled by seamlessbgiiating
a subspace tracking methodology at the cost ofhtslig
increment in computational complexity.
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