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Abstract 

Blind multiuser detection algorithms are used to eliminate the Multiple Access Interference (MAI) and the Near-Far effect in mobile 
communication systems. Four kinds of blind multiuser detection algorithms applied to code-division multiple-access (CDMA) 
communication system are studied in this paper. Those algorithms are the Least Mean Squares (LMS), Recursive Least Squares 
(RLS), Kalman filter and subspace-based Kalman filter algorithms. The resultant signal to interference ratio (SIR) at the output of the 
receivers controlled by the four kinds of multi-user detection algorithm has been discussed in this paper. Simulation results show that 
the subspace based Kalman filter algorithm outperforms all other three algorithms. Subspace-based Kalman filter algorithm has 
faster convergence speed, more practical and the capability of CDMA system can be increased. 
 
Keywords: Blind multiuser detection, Code-division multiple access, Mean output energy, Adaptive filtering. 
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1. INTRODUCTION 

Direct-sequence code-division multiple-access (DS-CDMA) 
has been widely studied in the literatures. Recently, adaptive 
interference suppression techniques based on multiuser 
detection have been considered as powerful methods for 
increasing the quality, capacity, and coverage of CDMA 
systems [1]. 
 
The mitigation of MAI in CDMA systems is a problem of 
continuing interest since MAI is the dominant impairment for 
CDMA systems. It is widely recognized that MAI exists even 
in perfect power-controlled CDMA systems [2]. Multiuser 
detectors perform better than the conventional detector under 
all power distributions, except in pathological cases, such as 
the decorrelating detector in extremely low signal to noise 
ratio (SNR) [2]. Therefore, multiuser detection is not only a 
solution to the near-far problem but is also useful even with 
power control. 
 
In order to successfully eliminate the MAI and detect the 
desired user’s information bits, one or more of the following is 
usually required at the receiver end:  
1) Spreading waveform of the desired user; 
2) Spreading waveforms of the interfering users; 
3) Propagation delay (timing) of the desired user; 
4) Propagation delays of the interfering users; 
5) Received amplitudes of the interfering users (relative to that 
of the desired user); 
6) Training data sequences for every active user 
 

The “blind” adaptive multiuser detectors require only the 
knowledge of (1) and (3), which is, the same knowledge as the 
conventional receiver.  
 
Previous work on blind adaptive multiuser detection dates 
back to a 1995 paper by Honig et al. [3], who established a 
canonical representation for blind multiuser detectors and used 
stochastic gradient algorithms such as LMS to implement the 
blind adaptive mean output energy (MOE)  detector. As 
elegantly shown by Roy [4], the blind adaptive MOE detector 
has a smaller eigenvalue spread than the training-based 
adaptive LMS detector; hence, the blind LMS algorithm 
always provides (nominally) faster convergence than the 
training driven LMS-MMSE receiver but at the cost of 
increased tap-weight fluctuation or misadjustment. 
 
It is well-known that the RLS algorithm and the Kalman 
filtering algorithm are better than the LMS algorithm in 
convergence rate and tracking capability [2]. Using the 
exponentially weighted sum of error squares cost function, 
Chen and Roy [5] proposed an RLS algorithm that requires the 
knowledge of (1)–(4) and, thus, is not a blind multiuser 
detector. Later, Poor and Wang [6] proposed an exponentially 
windowed RLS algorithm for blind multiuser detection 
requiring only the knowledge of (1) and (3). 
 
On the other hand, the RLS is a special case of the Kalman 
filter [7], [8], whereas the Kalman filter is known to be a 
linear minimum variance state estimator [7], [9] and [10]. 
Motivated probably by these two facts, some attention has 
been focused on Kalman filter-based adaptive multiuser 



IJRET: International Journal of Research in Engineering and Technology     eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org                                                                       455 

detection [11]–[15]. In particular, it is shown in [13] that when 
applied in an asynchronous CDMA system, the RLS algorithm 
performs more poorly than the more general Kalman filter 
algorithm. 
 
Zhang and Wei [2] proposed a simple and effective state space 
model for the multiuser detection problem in a stationary or 
slowly fading channel and employed Kalman filter as the 
adaptive algorithm. Compared with the LMS approach in [3] 
and the RLS approach in [6], this detector demonstrates lower 
steady-state excess output energy in adaptation. Interestingly, 
though the state space model for the Kalman filter was devised 
under a time-invariant assumption, the resulting algorithm 
could work well in a slowly time-varying environment.  
 
Motivated by the signal subspace concept in [16], Zhou et al. 
[17] proposed a modified version of this blind adaptive 
multiuser detector by modeling the detector as a vector in the 
signal subspace and employing a Kalman filter philosophy 
similar to that in [2] to derive the coefficients adaptively.  
 
Compared with the full-rank approach in [2], despite some 
similarity in the state-space model, this new subspace-based 
multiuser detector has some significantly important merits. 
First it has lower computational complexity and faster 
convergence rate in terms of SIR. Secondly, it is less 
conditioned on some system parameters such as the desired 
users’ signal amplitude than the full-rank method, thus it is a 
blind detection method in a more strict sense. Additionally, the 
detection effectiveness is maintained both in additive Gaussian 
noise channels and in slowly time-varying Rayleigh fading 
channels. In a dynamical system where users can enter and 
leave at random, the structure of the signal subspace is also 
time-varying. In this case a subspace tracking algorithm is 
seamlessly integrated into the proposed detector to track the 
changes and provide an online estimation of the signal 
subspace.  
 
To this end; this paperpresents and comparesthe four 
mentioned algorithms.Their performances in the case of static 
and dynamic channels are presented and comments are 
provided to fulfill the comparative study. 
 
2. SIGNAL MODEL 

Consider an antipodal K-user synchronous DS-CDMA system 
signaling through an additive white Gaussian noise channel. 
By passing through a chip-matched filter, followed by a chip-
rate sampler, the discrete-time output of the receiver during 
one symbol interval can be modeled as 
 

           ���� = � �	
	����	��� + 
����,                           �1�
�

	��
 

� = 0,1, … … . �� − 1 
 

Where 
����ambient channel noise; 
�number of users; 
�	received amplitude of the kth user; 

	���information symbol sequence from the kth user,  
chosen independentlyand equally from {-1,+1} ; 
�	���signature waveform of the kth user; 
 
It is assumed that�	��� is supported only on the 
interval[0, �� − 1],  
Where 
�� = ���  symbol interval; 
��chip interval; 
Nprocessing gain. 
 
Defining 
 

 ���� = [��0�, ��1�, … , ��� − 1�] 

!��� = [��0�, ��1�, … , ��� − 1�]                   �2�  
 
We can express (1) in vector form 
 

���� = ��
����#� + � �	
	���#	

�

	�$
+ 
!����3� 

 
Where 
 
#	 = �1/√��[�	�0�, �	�1�, … , �	�� − 1�] is the code 
sequence assigned to the kth user. 
 
For convenience, we will assume that the desired user is k=1. 
It is well known that any linear multiuser detector for user 1 
can be characterized by the tap-weight vector (���� such that 
the decision on 
����during the nth symbol interval is given by 
 


)���� = �*��〈(�, �〉� = �*�-(� , ����. �4� 
 
Where 〈0, 1〉 denotes the dot product of the vectors 0, 1 
 
3. BLIND ADAPTIVE MULTIUSER DETECTORS 

3.1 Blind LMS Multiuser Detector 

The canonical representation of a linear blind adaptive 
multiuser detector for user 1 was firstly established [3] as 
follows: 
 

                              (���� = #� + 2�����5� 
 
Subject to  
 

〈#�, 2�〉 = 0                                           �6� 
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Where#� is the spreading vector of the first user and (���� is 
the adaptive part of the detector. By minimizing a MOE cost 
function of the form. 
 
                              567�(�� = 78〈�, (�〉$9 �7� 
 
Honig et al. [3] have proposed a blind LMS based algorithm to 
update the adaptive  
 
 

2���� = 2��� − 1� − ;<���[���� − <=>���#�]�8� 
 
Where<��� = 〈����, #� + 2��� − 1�〉is the output of the 
detector <=>��� = 〈����, #�〉is the output of the conventional 
matched-filter, and ;is the step-size that controls the 
adaptation speed. The step size is given by (70) in [3], when 
implementing the LMS algorithm, the step-size must satisfy 
the stability condition of convergence of output MSE: 
 

                             ; < 2
∑ �	$ + �
$�	��

                                     �9� 

 
3.2 Blind RLS Multiuser Detector  

Using the minimum output energy criterion, Poor and Wang 
[6] proposed a RLS algorithm for blind multiuser detection. 
The exponentially windowed RLS algorithm selects the 
weight vector to minimize the sum of exponentially weighted 
output energy, namely 
 

minimize� CDE��(� ��������$
D

F��
                 �10� 

 
Subject to 
 

                                   #� (���� = 1                                           �11� 
 
Where0 < C > 1 is the forgetting factor. The solution to this 
constrained optimization problem yields the linear MMSE 
detector, which is given by [4], [11] 
 

                      (���� = HE����#�
#� HE����#�

                                      �12� 

Where 

                       H��� = � CDEF��I�� �I�
D

F��
                            �13� 

 
A recursive procedure for (���updating can be obtained as 
follows: 
 

                  J��� ≜ HE��� − 1�����
C + � ���HE��������                         �14� 

L��� ≜ HE����#� = 

1
C [L�� − 1� − J���� ���L�� − 1�]                  �15� 

 

                         (��� = 1
# L��� L���                                    �16� 

 

HE���� = 1
C [HE��� − 1� − J���� ���HE��� − 1�]    �17� 

 
3.3 Blind Multiuser Detection Based on Kalman 

Filtering 

In [2], Zhang et al. have proposed to use an alternative 
standard representation for the blind adaptive multiuser 
detector: 
 

                        (���� = #� − M�,DNOOP����                           �18� 
 
Where the columns of the N × N− 1 matrix M�,DNOOspan the null 
space of#�, i.e 
 

                                  #� M�,DNOO = 0                                          �19� 
 
It should be noted that M�,DNOOcan be pre-computed off-line via 
one of many orthogonalization procedures such as the Gram-
Schmidt orthogonalization. Unlike (5), the adaptive part 
P����in (18) is now of size (N − 1) × 1 and has the advantage 
of being unconstraint. Let us define the output of the detector 
as follows: 
 

                           <��� = (� �������                                        �20� 
 
Then <���has zero-mean and its variance is given by 
Paragraph comes content here. 
 

   78<$���9 = 567�(����� = 5Q7-(����. + ��$          �21� 
 
Thus, when the detector is optimal (i.e., 5Q7�(����� attains 
its MMSE value), the variance of <���corresponds to the 
minimum MOE and is dominated by the power of the desired 
user ��$. 
 
Substituting (18) in (20) yields 
 

             <��� = #� ���� − � ���M�,DNOOP����                    �22� 
 
Put <=>��� = #� ����and R ��� = � ���M�,DNOO. If 
P�achieves PSTU�, then (22) can be rewritten as the following 
measurement equation: 
 

                       <=>��� = R ���PSTU���� + <���                �23� 
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If the detector is assumed to be time-invariant, one can write: 
 

                   PSTU���� = PSTU��� − 1�                                  �24� 
 
As (23) and (24) define a state-space representation of the 
adaptive part of the detector, Kalman filtering makes it 
possible to recursively update P���[2]. 
 
V��� = W��, � − 1�R��� 
                          × [R ���W��, � − 1�R��� + YZFD]E�       �25� 

 
W�� + 1, �� = W��, � − 1� 
                                    −V���R ���W��, � − 1�                   �26� 

 
P[ STU���� = P[ STU��� − 1� 

                      +V���\<=>��� − R ���P[ STU��� − 1�]       �27� 
 

                 (���� = #� − M�,DNOOP[ STU����                             �28� 
 
Where V��� is (N-1)×1 Kalman gain vector, ��� + 1, �� is 
(N-1)×(N-1)  correlation matrix of predicted state error and 
YZFD = 567�(����� is the minimum MOE of the dynamical 
system of user 1. The initial valueP[ STU��0� = 0and W�1,0� =
^. 
 
3.4 Subspace-based Blind Multiuser Detector using 

Kalman Filter 

Based on the signal model (3) and the associated independent 
assumptions, the autocorrelation matrix of the received signal 
����can be expressed as 
 

H = 78�������� 9 = � �	$ #	#	 + 
$^_

�

	��
 

= `a` + 
$^_                  �29� 
 
Where ̀ = [#�#$  …  #�] denotes the signature matrix, and 
a = bIc*���$�$$  …  ��$ � denotes the diagonal matrix of the 
signal amplitude. On the other hand, applying an eigende 
composition to the matrix H yields 
 

                    H = ded = d�e�d� + dDeDdD                  �30� 
 
where d = [d� dD], e = bIc*�e� eD�. fg =
diag�λ�λ$  …  λm� contains the K largest eigenvalues of Hin 
descending order, and d�contains the corresponding 
orthonormal eigenvectors. eD = 
$^_E�contains another N–K 
eigenvalues of Hand dD contains the corresponding N–K 
orthonormal eigenvectors. The column vectors of d� and dD 
span two orthogonal subspaces, namely, the signal subspace 
and the noise subspace withd� dD = 0. 
 

In [17], Zhou et al. have proposed a new blind adaptive 
multiuser detection scheme based on a hybrid of Kalman filter 
and subspace estimation. The detector can be expressed as an 
anchored signal in the signal subspace as follows 
 

                              (� = #� + #�DNOOP�                                   �31� 
 
Subject to 
 

                                    (� #� = 1                                                �32� 
 
Where the column vectors of the matrix [#�#�DNOO] compose 
the signal subspace basis set and P�is a weight vector. 
Now,#�DNOO its columns span the null space of#�, i.e. 
#� #�DNOO = 0 , and they are orthonormal, i.e. #�DNOO #�DNOO =
^�E� . Since #�is assumed to be known and #�DNOOcan be 
obtained, for example, by applying eigenvalue decomposition 
(EVD) to the autocorrelation matrixH. 
 
In order to find the optimal weight vector P�that minimizes 
the MAI. It is demonstrated this vector can be estimated by 
using the Kalman filter method [2]. The Subspace Kalman 
blind adaptive algorithm is summarized in Table-1. 
 

Table -1: Subspace-Based Kalman Filtering Estimation for 
Blind Multiuser Detection 

 
Step 1: 
Signal Subspace Estimation: 
*Compute autocorrelation matrix H for a batch of J 
symbols 

H = 1
n � �o�o 

p

o��
 

 
* Perform eigenvalue decomposition of H 

H = ded = d�e�d� + dDeDdD  
 
* From matrix  

q = [#� r� … r�E�] 
where 
rF is the i th column vector of d�, ∀I = 1, … , � − 1 
 
* Apply Gram-Schmidt method on q to obtain an 
orthonormal matrix 

t = [#� u� … u�E�] 
 
* Let 

#�DNOO = [u�  …  u�E�] 
 be the null signal subspace of #� 
 
Step 2: 
Kalman Filtering Estimation in Symbol-rate Adaptation: 
* For n=1, 2, … 
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* Implement Kalman filter algorithm according to 
 (25)-(27) 
 
* Signal detection 

(���� = #� + #�DNOOP[ STU���� 

)���� = �*��(� ���, ����� 

* End  
 
4. COMPUTATION COMPLEXITY 

We now compare the computational complexity of LMS [3], 
RLS [6], Kalman [2], and Subspace Kalman blind adaptive 
algorithms [17]. The computational complexities of four 
algorithms are compared in term of the number of 
multiplications and additions per adaptation iteration as shown 
in Table-2. 
 

Table -1: Comparison of Computational Complexity 
 

Algorithm 
 

Computational 
Complexity 

LMS algorithm [3] O(N) 
RLS algorithm [6] O(N2) 
Kalman filtering algorithm [2] O(N2) 
Subspace Kalman filtering 
algorithm [17] 

 
O(NK) 

 
Generally, N>>K; thus, Subspace Kalman has much less 
computational complexity than the RLS and Kalman filtering 
algorithms. 
 
5. SIMULATION RESULTS 

In this section, several simulation results that compare among 
the four algorithms for blind multiuser detection are presented. 
 
As a figure of merit for assessing the MAI suppression 
capability of the blind LMS, RLS, Kalman filtering, and 
subspace-based Kalman filtering algorithms, the time-
averaged SIR (in decibels) at the nth iteration is given by [3] 
 

Qvw��� � 10xy* ∑ �(�O ���#��$=O��
∑ (�O ���-�O��� � 
�,O���#�.$=O��

									�33� 
 
Where 5	is the number of independent runs, and the subscript 
x indicates that the associated variable depends on the 
particular run. All signal energies are given in decibels relative 
to the background noise variance 
$, i.e., the SNR of user z is 
defined by Q�w � 10xy*�7	 
$⁄ �, where 7	 � �	$  is the bit 
energy of user z. In all simulations, user 1 is assumed to be 
the desired user that has the unit energy ��$ � 1 and an SNR of 
20 dB (i.e., 
$ � 0.01), and the processing gain � � 31. In 
the following, the data in each plot are the average over 500 
independent runs. 
 

5.1 Convergence Rate Comparison 

In Example 1, DS-CDMA systems in a Gaussian channel are 
simulated, and there are nine multiple-access interfering users 
among which five users have an SNR of 30 dB each, three 
users have SNR of 40 dB each, and another user has an SNR 
of 50 dB, i.e., �$$ � … � �|$ � 10, �}$ � �~$ � ��$ � 100, and 
���$ � 1000. Then, from (9), it follows that the step size 
should satisfy ; @ 1.47 X 10E�, and thus, μ � 3 X 10E�was 
used in the LMS algorithm. When applying the RLS 
algorithm, the initial value HE��0� � �E�^takes � � 0.01, and 
the forgetting factor C � 0.997 is taken. In Kalman filtering, 
we used, the estimate ��ZFD � 1in (25),  
 
The time-averaged SIR versus iteration numbers for the four 
algorithms is plotted in Fig. 1. It is seen that the performance 
of the subspace-based Kalman filtering algorithms outperform 
the rest. When n is sufficiently large subspace-based Kalman 
filtering algorithm approach SNR=19dB. This means that the 
MAI in the SIR has been eliminated almost completely. 
However, note that the subspace-based algorithm achieves this 
near-optimum performance at a significantly reduced 
computational complexity compared with the full-rank 
algorithm. Fig. 2 shows the mean square error (MSE) versus 
iteration number (time) for the four algorithms applied in a 
synchronous CDMA system. The most slow algorithm is the 
LMS while the other three algorithms reach the minimum 
MSE faster than LMS. 
 

 
 

Fig -1: Time-averaged SIR versus time for 500 runs when 
using the four algorithms to a synchronous CDMA system 

with processing gain N = 31. 
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Fig -2: MSE versus time for 500 runs when using the four 
algorithms to a synchronous CDMA system with processing 

gain N = 31. 
 

5.2 Tracking Dynamical Environment 

In Example 2, we compare the tracking capabilities of the 
LMS, RLS, Kalman filtering, and subspace-based Kalman 
filtering algorithms in a dynamical environment with a time-
varying number of users for DS-CDMA systems in a Gaussian 
channel. When  � < 600, the configuration is the same as 
Example 1. At  � � 600, three interfering users with SNR of 
40 dB are added to the CDMA system at the same time. At  
� � 1200, four interfering users with SNR of 40 dB and one 
interfering user with SNR of 50 dB are removed from the 
system. The subspace-based Kalman filter use projection 
approximation subspace tracking with deflation (PASTd) 
algorithm to track the rank and signal subspace with the 
forgetting factor � � 0.997. Fig. 3 show the tracking 
behaviors of the four blind adaptive algorithms in a 
synchronous system.  
 
In Fig. 3, It is also seen that the Kalman filter tracks faster 
than the subspace approaches due to the reason that in the 
subspace tracking strategy, the subspace-based algorithm 
includes two adaptation phases, that is, adaptive subspace 
tracking and then adaptive signal detection, whereas the full-
rank detector includes only one adaptation phase. 
 

 
 

Fig -3: Time-averaged SIR versus time for 500 runs when 
using the four algorithms to a synchronous CDMA system 

with processing gain N = 31 and the time-varying number of 
users. 

 
5.3 Slowly Time-Varying Environment 

Example 3 is a synchronous DS-CDMA system in a Rayleigh 
fading channel. We assume a single-path Rayleigh-fading 
channel with a Doppler frequency of 22 Hz, which is obtained 
based on Jakesmodel [18]. The signal model is expressed by 
 

���� � ��	
	����	�	��� � 
����,																														�34�
�

	��
 

� � 0,1, … , �� � 1 
 
Where �	 is the channel coefficient for the kth user and is a 
random variable following Rayleigh distribution The 
convergence curves for the subspace-based Kalman filter, the 
Kalman filter and the RLS are plotted in Fig. 4. The results 
show that all algorithms can track the slow channel 
fluctuation, and the subspace-based Kalman filtering detector 
still yields better performance than the other two detectors. 
The MSE curves of the three algorithms are shown in Fig. 5. 
The curves show that all of them have the same residual error 
while the subspace-based Kalman filter is the faster algorithm. 
 
5.4 BER Performance Comparison 

In Example 4, we evaluate the BER performance of the four 
algorithms versus SNR in Rayleigh fading channel, the 
configuration is the same as Example 1. The receivers process 
10000 symbols and averaged over 100 independent runs for all 
BER simulations. The results in Fig. 6 indicate that the 
subspace-based Kalman filter and the full-rank Kalman 
filtering algorithms outperform the RLS and LMS algorithms. 
The performance of the subspace-based Kalman filter 
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algorithm is close to the Kalman filtering algorithm but with 
much lower complexity. 
 

 
 

Fig -4: Time-averaged SIR versus time for 500 runs when 
using the three algorithms with C = 0.997 to a synchronous 
CDMA system in Rayleigh fading channel; the processing 

gain is N = 31. 
 

 
 

Fig -5: MSE versus time for 500 runs when using the three 
algorithms with C � 0.997 to a synchronous CDMA system in 

Rayleigh fading channel; the processing gain is N = 31. 
 

 
 

Fig -6: BER versus SNR for 100 runs when using the four 
algorithms to a synchronous CDMA system in Rayleigh 

fading channel. 

CONCLUSIONS 

In this paper, we have analyzed the SIR and MSE performance 
of four blind-adaptive algorithms. Subspace-based Kalman 
filter has near-far resistant, lower computational complexity, 
and better convergence performance compared with another 
algorithms. It is effective in both AWGN channel and slowly 
time-varying Rayleigh-fading channel. It is also a blind 
detection method in a stricter sense because it is less 
conditioned on the knowledge of the signal amplitude of the 
desired user. Adaptation in the dynamic environment with 
variable number of users is enabled by seamlessly integrating 
a subspace tracking methodology at the cost of slight 
increment in computational complexity.  
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