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Abstract 

In this paper, a FPGA implementation of linear time LDPC encoder is presented. This encoder implementation can handle large size 
of input message. Linear Time encoder hardware architecture reduces the Complexity and area of encoder than generator matrix 
based encoder techniques. This encoder is simulated on different platform which includes Matlab & High level languages for 1/2 rate 
& up to 4096 code length. FPGA implementation of the encoder is done on Xilinx Spartan 3E Starter Kit. The result shows the speed 
& area comparison for different FPGA platform. 
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1. INTRODUCTION 

As their name suggests, LDPC codes are block codes with 
parity-check matrices that contain only a very small number of 
non-zero entries proposed by Gallager in 1962 [1] and has 
gained popularity due to their capacity-approaching error 
correcting performance [2].  
 
In LDPC codes sparseness of H guarantees both a decoding 
complexity and minimum distance which increases only 
linearly with the code length, however, finding a sparse parity-
check matrix for an existing code is not practical. Instead 
LDPC codes are designed by constructing a sparse parity-
check matrix first and then determining a generator matrix for 
the code afterwards. 
 
In order to reduce encoding complexity, LDPC codes with 
dual diagonal structure is adopted by the latest next-generation 
wireless LAN standard, IEEE 802.11n [3]. The LDPC 
encoding algorithm used is near-linear time proposed by [4] & 
[5].An LDPC code parity-check matrix is called (wc,wr)-
regular if each code bit is contained in a fixed number, wc, of 
parity checks and each parity-check equation contains a fixed 
number, wr, of code bits. An efficient encoding algorithm [6] 
is used to reduce the encoding complexity. 
 
In this paper we have implemented the low complexity 
Encoder algorithm on hardware platform on Xilinx Spartan 3E 
FPGA & simulated using Matlab 2012, Modelsim & c code. 
The Synthesis results shows the area & speed comparison on 
different FPGA platform. The encoded codeword is decoded 
using belief propagation algorithm [7] & results are verified 
using Matlab program. 
 
 

2. LDPC CONSTRUCTION 

The construction of binary LDPC codes involves assigning a 
small number of the values in an all-zero matrix to be 1 so 
that the rows and columns have the required degree 
distribution. 
 
The original LDPC codes presented by Gallager are regular 
and defined by a banded structure in H. The rows of 
Gallager’s parity-check matrices are divided into wc sets 
with M/wc rows in each set. The first set of rows contains wr 
consecutive ones ordered from left to right across the 
columns. (i.e. for i ≤ M/wc, the i-th row has non zero entries 
in the ((i − 1)K + 1)-th to i-th columns). Every other set of 
rows is a randomly chosen column permutation of this first 
set. Consequently every column of H has a ‘1’ entry once in 
every one of the wc sets. Since LDPC codes are often 
constructed pseudo-randomly we often talk about the set (or 
ensemble) of all possible codes with certain parameters (for 
example a certain degree distribution) rather than about a 
particular choice of parity-check matrix with those 
parameters. LDPC codes are often represented in graphical 
form by a Tanner graph. 
 
The Tanner graph as shows in figure-1, consists of two sets 
of vertices: n vertices for the code word bits (called bit 
nodes), and m vertices for the parity-check equations (called 
check nodes). An edge joins a bit node to a check node if 
that bit is included in the corresponding parity-check 
equation and so the number of edges in the Tanner graph is 
equal to the number of ones in the parity-check matrix. 
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Fig 1: The Tanner graph representation of the parity-check a 

6-cycle is shown in bold. 
 
A cycle in a Tanner graph is a sequence of connected 
vertices which start and end at the same vertex in the graph, 
and which contain other vertices no more than once. The 
length of a cycle is the number of edges it contains, and the 
girth of a graph is the size of its smallest cycle. The Mackay 
Neal construction method for LDPC codes can be adapted to 
avoid cycles of length 4, called 4-cycles, by checking each 
pair of columns in H to see if they overlap in two places. 
The construction of 4-cycle free codes using this method is 
given in Algorithm 1. Input is the code length n, rate r, and 
column and row degree distributions v and h. The vector α is 
a length n vector which contains an entry i for each column 
in H of weight i and the vector β is a length m vector which 
contains an entry i for each row in H of weight i. 
 
Algorithm 1: H Matrix Generation  
Procedure  
MNCONSTRUCTION (n, r, v, h) ⊲⊲⊲⊲Required length, rate 
and degree distributions 
H = all zero n(1 − r) × n matrix    ⊲⊲⊲⊲ Initialization 
α = []; 
for i = 1 : max(v) do 
for j = 1 : vi × n do 
α = [α, i] 
end for 
end for 
β = [] 
for i = 1 : max(h) do 
for j = 1 : hi × m do 
β = [β, i] 
end for 
end for 
for i = 1 : n do             ⊲⊲⊲⊲ Construction 
c = random subset of β, of size αi 
for j = 1 : αi do 
H(cj , i) = 1 
end for 
α = α − c 
end for 
repeat 
for i = 1 : n − 1 do  ⊲⊲⊲⊲ Remove 4-cycles 
for j = i + 1 : n do 
if |H(:, i) 
S 

H(:, j)| > 1 then 
permute the entries in the j-th column 
end if 
end for 
end for 
until cycles removed 
end procedure 
 
3. ENCODING USING GENERATOR MATRIX  

For a linear block code, the sum of any two code words results 
in another code word. LDPC code construction is also done in 
similar way of linear block code. From a given parity check 
matrix, H, a generator matrix, G is derived. Data, m = m1, 
m2…..mn is encoded by multiplying it with the generator 
matrix, c = mG where m is a string of information bits. It has 
to be noted that putting H in systematic form, H= [P T| IM], no 
longer has fixed column or row weights and P is very likely to 
be dense. The denseness of P determines the encoder 
computational complexity. A dense generator matrix requires 
a large number of operations when doing the matrix 
multiplication with the data to be sent. The encoding 
complexity could be reduced for some codes by parity check 
matrix pre-processing. An efficient encoding technique has 
been developed to reduce the encoding complexity by 
rearranging the parity check matrix before encoding. The 
encoding complexity also depends on the structure of the code  
 
The construction of LDPC codes is categorized mainly into 
two: Random constructions and structured constructions. The 
type of construction is determined by the connections between 
check nodes and variable nodes in Tanner graph. Each type of 
constructions has their advantages over the other. Random 
constructions refer to the unstructured row-column 
connections in the parity check matrix with no predefined 
pattern. Random codes have better performance compared to 
structured codes in case of long codes. They are used in cases 
we want to increase the girth or rate of a given size. But longer 
length random LDPC codes require large memory storage in 
practical implementation which affects the computational 
efficiency of the code. The uncertainty of guaranteeing an 
asymptotically optimum performance in random constructions 
leads to the use of structured construction of LDPC codes. 
Structured construction method put constraints on row – 
column connections to get a desired or predefined connection 
pattern that is easier to implement in hardware. 
 
3.1 LDPC Encoding Example 

 
  0 1 0 1 1 0 0 1 

                          H =  1 1 1 0 0 1 0 0 
 0 0 1 0 0 1 1 1 
 1 0 0 1 1 0 1 0 
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The NMH ×  parity check matrix defines a rate NKR= ,

( )KN,  code where      MNK −= . 

 
Code word is said to be valid if it satisfies the syndrome 
calculation: 
 

0. == THcz  
 
We can generate the code word in by multiplying message m 
with generator matrix G  
 

c = m.G 
 
We can obtain the generator matrix G from parity check 
matrix H by:  
 
1. Arranging the parity check matrix in systematic form 

using row and column operations  
 

[ ]
KMMsys PIH

×
=

 
 










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





=
110100

111010
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sysH

 
 
2. Rearranging the systematic parity check matrix 

 

[ ]K
T

MK IPG ×= , 

 



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
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





=
100111

010110

001011

G  

 

3. We can verify our results as  0. =THG  
 
4. LINEAR-TIME ENCODING FOR LDPC CODES 

Instead of  finding a generator matrix for H, an LDPC code 
can be encoded using the parity-check matrix directly by 
transforming it into upper triangular form and using back 
substitution. The idea is to do as much of the transformation as 
possible using only row and column permutations so as to 
keep as much of H as possible sparse. 
 
Firstly, using only row and column permutations, the parity-
check matrix is put into approximate lower triangular form: 
             
              Ht =   
 

Where the matrix T is a lower triangular matrix (that is T has 
ones on the diagonal from left to right and all entries above the 
diagonal zero) of size 
 

(m − g) × (m − g) 
 
If H t is full rank the matrix B is size  
 

m − g × g 
 
And A is size  
 

m − g × k 
 
 The g rows of H left in C, D, and E are called the gap of the 
approximate representation and the smaller g the lower the 
encoding complexity for the LDPC code. 
 
Step 1 

Instead of putting H into reduced row-echelon form we put it 
into approximate lower triangular form using only row and 
column swaps. For this H we swap the 2-nd and 3-rd rows and 
6-th and 10-th columns to obtain: 
 
Ht = 

1 1 0 1 1 0 0 1 0 0 
0 0 0 1 0 1 0 1 1 0 
0 1 1 0 1 0 1 0 0 1        
1 1 0 0 0 0 1 0 1 1 
0 0 1 0 0 1 0 1 0 1 

 
With a gap of two 
 
Once in upper triangular format, Gauss-Jordan elimination is 
applied to clear E which is equivalent to multiplying Ht by 
 
 , 
 
 
To give 
 
                                                 
 
where  
 
            
 
And 
 
 
 
From Step 1 
 
 
 

 A B T 
               C D E 
 

 Im-g 0 
 -ET-1 Ig 

            Im-g    0 
H=      -ET-1  Ig ̃  

 C = -ET-1A+C ̃ 

D = -ET-1B+D ̃ 

  A B T 
  Ht =   C D 0 ̃ ̃ 
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Step 2 

 
 
 
 
 
And 
 
 
 
 
 
 
 
To give 
 
 
 
 
 
 
When applying Gauss-Jordan elimination to clear 
and D are affected, the rest of the parity-check matrix remains 
sparse. Finally, to encode using H the code word
 

c = [c1c2, . . . , cn] 
 
Is divided into three parts,  
 

c = [u, p1, p2], 
 
Where 
 

u = [u1, u2, . . . , uk] 
 
Is the k-bit message 
 

p1 = [p11 , p12 , . . . , p1g ],
 
Holds the first g parity bits and  
 

p2 = [p21 , p22 , . . . , p2m−g ]
 
Holds the remaining parity bits 
 
The code word 
 

c = [u, p1, p2] 
 
Must satisfy the parity-check equation c H T =0 and so
 

Au + Bp1 + Tp2 = 0,              ---- (1)
And 
 
            Cu + Dp1 + 0p2 = 0.                 ---- (2

  1 0 0 
T-1=        1 1 0 
  0 0 1 

̃ 

̃ 

̃ ̃ 

̃ 

                     
    
 
              
  Im-g    0        
 -ET-1  Ig      =                 

    
  1 0 0 0 0 
  0 1 0 0 0 
  0 0 1 0 0      ,    
  1 1 1 1 0 
  1 0 1 0 1 

̃ H = 

1 1 0 1 1 0 0 1 0 0 
0 0 0 1 0 1 0 1 1 0 
0 1 1 0 1 0 1 0 0 1 
0 1 1 0 0 1 0 0 0 0 
1 0 0 1 0 1 1 0 0 0 
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Jordan elimination to clear E only C 
check matrix remains 

code word  

1g ], 

] 

=0 and so 

(1)                       

(2) 

Since E has been cleared, the parity bits in p1 depend only on 
the message bits, and so can be calculated independently of 
the parity bits in p2. If D 
Equation (2) 
 

p1 = D−1 Cu
 

If D is not invertible the columns of 
is. By keeping g as small as possible the added complexity 
burden of the matrix multiplication
(g2), is kept low. Once p
Equation (1) 
 

p2 = −T−1(Au + B
 
Where the sparseness of A
the complexity of this operation low and, as 
triangular, p2 can be found using back
 
From Step 2 we partition the length 10 codeword c = [
. . , c10] as c = [u, p1, p2] where p1 = [
c9, c10]. The parity bits in p1 are calculated
using Equation 3 
 
Step 3 

                    
 
   
   
   
   
 
 
 
As T is upper-triangular the bits in p
using back substitution 
 
  
        
 
 
 
and the code word is c =  
 
 
Again column permutations were used to obtain 
and so either Ht, or H with the same column permutation 
applied, will be used at the 
 
5. ENCODER DESIGN 

Hardware implementation of Encoder is don
Spartan 3E FPGA starter kit. Figure 2 shows the flow diagram 
for encoder implementation. We have implemented the ½ rate 
encoder for different matrix size 4X8, 16X32, 32X64, 64X128 

̃ 

̃ 

̃ 

̃ 

p21 = u1  u2  u4  u5= 1 

p22 = u4 p11 p21=0 

p23= u2  u3  u5  p12

1 1 0 0 1 1 0 1 0 0

 

                                                      
            1 0          
                      1 1          

   
                                               
   
                                             

p1= D-1 C = ̃ ̃   

eISSN: 2319-1163 | pISSN: 2321-7308 

__________________________________________________________________________________________ 

                                      445 

has been cleared, the parity bits in p1 depend only on 
bits, and so can be calculated independently of 

D is invertible, p1 can be found from 

1 Cu.           ---- (3) 

is not invertible the columns of H can be permuted until it 
as small as possible the added complexity 

burden of the matrix multiplication in Equation (3), which is 
Once p1 is known p2 can be found from 

Bp1),         ---- (4) 

A, B and T can be employed to keep 
of this operation low and, as T is upper 

can be found using back substitution. 

we partition the length 10 codeword c = [c1, c2, . 
p2] where p1 = [c6, c7] and p2 = [c8, 
in p1 are calculated from the message 

  
    
    
    

triangular the bits in p2 can then be calculated 

Again column permutations were used to obtain Ht from H 
with the same column permutation 

applied, will be used at the decoder.  

DESIGN & IMPLEMENTATION 

Hardware implementation of Encoder is done on Xilinx 
kit. Figure 2 shows the flow diagram 

for encoder implementation. We have implemented the ½ rate 
encoder for different matrix size 4X8, 16X32, 32X64, 64X128 

̃ 

 

̃ 

= 1 1  0 1=1 

 1  1 =0  

2 = 1  0 1  0 = 0 

1 1 0 0 1 1 0 1 0 0 

   1            
                                1    
         0 1 1 0 0         0   =    1 0    

   1 0 0 1 0          0 
   1                  
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on FPGA.We have used the Xilinx Vivado high level 
synthesis tool for design of FPGA based encoder. This tool 
supports the High level synthesis feature, using this feature we 
have done synthesis of our high level program. The Encoder 
design is synthesized on different FPGA & results are 
compared in terms of area & speed.  
 

 
 

Fig-2 Encoder Implementation flow 
 
6. IMPLEMENTATION RESULTS  

We have simulated the ldpc encoder & log domain decoder 
algorithm in Matlab & results are verified both in simulation 
& implementation. Figure-4 shows Matlab simulation results. 
We have implemented linear-time Encoder for LDPC codes. 
This algorithm is implemented on Xilinx Spartan 3E board 
using ISE 13.1 & Xilinx High Level synthesis vivado HLS 
tool. 
 
The synthesis results for Spartan 3E FPGA are shown in 
Figure 3. 
 

 
 

Fig -3 Device Utilization for Spartan 3E FPGA 
 

Table-1 Comparison of Area & speed 
 
Selected Device Number of Slice 

Registers 
Clock 

Frequency 
3s500efg320-4 1506  (out of 4656 )  71.782MHz 
6slx4tqg144-3  2321  (out of 4800 )   117.427MHz 
7a30tcsg324-3 1918 ( out of 42000)     187.337MHz 
 
Encoder performance is verified on different FPGA platform 
table 1 shows the comparison of area & speed, from the table 
it is clear that Xilinx 7a30tcsg device Supports   
Faster design speed. 
 

 
 

Fig-4 Result of Encoding & Decoding in Matlab simulation 
 
CONCLUSIONS 

We have implemented the linear time encoder in simulation & 
synthesis is done using Xilinx Tool. Xilinx Spartan 3E starter 
board is used for hardware implementation. The algorithm 
accepts the inputs as a input Message, H-matrix size & 
generates the Encoded codeword as a output. 
 
This algorithm we have simulated on various platform 
including Matlab, C code, ISE13.2 & Modelsim .Building the 
Encoded codeword using Generator matrix is complicated for 
large size of parity check matrix .This Linear Time encoder 
algorithm provides an alternative for generator matrix creation 
& suitable for large parity check matrix .We have simulated & 
implemented LDPC encoder algorithm for smaller as well as 
larger codeword. 
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