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Abstract

Analytical solution quest for viscoelastic sheaintting fluid flow through circular conduit is a mat of great prominence as it
directly evolvesmost efficient criteria to investig various responses of independent parametergis&ging this facet present
endeavour attempts to develop a computational mfmteflesigning runner conduit lateral dimensionanplastic injection mould
through which thermoplastic melt gets injectedoiiset injection phenomenon is represented by gowgrequations on the basis of
mass, momentum and energy conservation princidlesEmbracing Hagen Poiseuille flow problem analagdo runner conduit
injection the manuscript uniquely imposes runnendiot inlet and outlet boundary conditions alonghwielative to appropriate
assumptions; governing equations evolve a commutatiodel as criteria for designing. To overwhelnmNMdewtonian’s abstruse
Weissenberg-Rabinowitsch correction factor has bagopted byaccommodating thermoplastic melt belhaviowards the final
stage of derivation. The resulting final computatib model is believed to express runner conduitedisions as a function of
available type of injection moulding machine speatfons, characteristics of thermoplastic melt aeduired features of component
being moulded. Later the equation so obtained leeslverified by using dimensional analysis method
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1. INTRODUCTION The physical process of thermoplastic melt injectibrough

runner conduit in a typical plastic injection moulid

Mathematical models for polymer processingisby #enge
deterministic(as are the processegpically transport based
unsteady (cyclic process) and distributed parameter.
Particularly complex thermoplastic melt injectionouid
system was broken into clearly defined subsystemrs f
modelling. Runner dimension plays a vital role ihet
idealization of an injection mould and hence degvia
computational model to determine runner dimensi@s wf
immense need. There have been a fairly large nurober
Newtonian apprehensions for which a closed formyénal
solution are prevailing. However, for non-Newtonian
apprehension fluids such as thermoplastic meltsctexa
solutions are rare. In general, non-Newtonian nrgéction
behaviours are more complicated and subtle comptoed
Newtonian fluid circumstances[2].Developing a modet
complex process like thermoplastic melt (which isnn
Newtonian highly viscoelastic, shinning type fluiijection
through runner conduit (circular conduit) requirasclear
objective definition. Hereto the sole objective dis
derivation is to obtain a runner diameter desigteia as a
function of injection moulding machine specificatsoused for
the purpose of injection, type of thermoplastic tmabing
injected and features of the component being moulde
known parameters.

represented by a set of expressions, which insighlespt
acquaintance of in-situ physical phenomena thatirscwithin
actualprocessing[3]. Mathematical modelling invalve
assembling sets of various mathematical equatiarigch
originates from engineering fundamentals, such he t
material, energy and momentum balance equation$igtein
representative  mathematical equations attempts to
computationally model the interrelations that goverctual
processing situate[5]. More complex the mathemiaticadel,
the more accurately it mimics the actual proce$sTéwards
obtaining an analytical solution we must first slifypthe
balance equations, although the resulting equatians
fundamental, rigorous,nonlinear, collective, compland
difficult to solve [2]. Therefore, the resulting wagions are
sufficiently simplified by considering appropricassumptions
that correspond to those the actual processingrétdtions
between variables and parameters. These assumpdi@ns
geometric simplifications, initial conditions andhysical
assumptions, such as isothermal systems, isotropierials
as well as material models, such as Newtoniantielagsco-
elastic, shear thinning, or others [6]. Finally hdary
conditions like velocity and temperature profiles applied to
simplifying the resulting equations completely [Hurther
meticulous rearranging of the functions leads us tomplete
computational model that enables design engineers t
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confidently design superior moulds at bonus cos$test
idealizing the process from mould design perspeday.

2. GOVERNING EQUATIONS

The phenomenon ofactual melt injection through tinener

conduit is represented by governing equations that

discriminately appreciate compressibility, unsteads and
non-Newtonian factors. Hence are highly rigorouslimear,
comprehensive, complex and difficult to solve. Fexplicit
assumptions are made herein are:

(a) Thermoplastic viscosity remain consistent

(b)Body forces are neglected when compared to tfat
viscous forces

(c) Thermoplastic melt thermal conductivity is cinlesed
constant.

2.1 Equation of Continuity (Mass Balance)
a_p+pur +a(pur)+1a(pue)+a(puf) -
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Substituting].(pU) = p0.U+0p.U, in equation (2),

(Z)—/t)+ pd.U+0p.U=0 3)

dp

4+ p0U=0
dt P

(4)

2.2 Equations of Motion
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Substituting Newtonian constitutive relation Ecg). (o (14) in
equations of motion Eqn. (5) to (7) we get,
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2.3 Energy Balance Equation
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From thermodynamic relation we have,
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Hence Eqgn. (18) simplifies as
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We can apprehend from Eqgn. (19) and (21) that pgtie
already present quantitatively in energy equatiam.E19)
itself.

3. SOLUTION FOR GOVERNING EQUATIONS

Geometrical conditions

a) Analogous to pipe flow transverse velocity compdaen
could be considered almost z€geometrical constraint)
ie.,U, =U,=0, accordingly transverse pressure

gradience would also be zero. Hegge- Clige 0

or 06
b) Since runner cross section is axis-symmetric Fofil
tangential gradience could be considered zero i.e.,
i:o
0d4
c) Only lateral gradience of temperature is considered
because radial gradience far exceeds than other two
directionsi.e.,

Upon substituting above (a) to (c), governing eiquiat reduce
to,
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Substituting Egn. (22) in Eqn. (23) and Eqgn. (24)get
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3.1 Hagen-Poiscuille Velocity Profile

(25)

Thermoplastic melt transportation studies are aaiti
fordesigninglateral dimension of runner conduitsvasl as
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injectionbehaviours [9]. Cognising axial velocityf mon-
Newtonian, shear thinning thermoplastic melt infacttcan
conversely enable conduit dimension determinati@cause
Axial velocity component is a function of conduiadius
through which melt is being injected [10]. Sincertihoplastic
melt injection through circular runner conduit ot creep
level Reynolds number, the flow is fully developedd
laminar. Hence well-established incompressible temiflow
Hagen-Poiscuille velocity profile can be consideaedlogous
to represent velocity for thermoplastic melt injestthrough
circular conduits. Parabolic velocity profile thgiu circular
conduits varies from core to wall in such a waytthare
velocity would be maximum while almost zero at ttigid
stationary wall. Accordingly velocity profile woulake,

-10P; ,
U{=Ea—£(R -r?) 27)

Although Egn. (27) neglects compressibility factoerein we
retain it right from equation of continuity to agprate actual
expandability and compressibility phenomenon thioegch
cycle typically involved in injection moulding. Ssiituting

Eqgn. (27) in Egn. (25) we get,
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Similarly substitute Eqn.(27) in Eqn.(26) we get,
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Now consideringHagen-Poiscuille temperature prsfilior
thermoplastic melt injection through circular coitdu

Gl
C —=
p“at

(29)

T =2 (UL) (30)

Eqgn. 30featuresmaximum temperature at conduit witte an
almost constant streaming gradience, while in &éhjection
consequent to concurrent cooling melt temperateduaes
non-linearly, despite cooling melt streams keep impahead.
Hence temperature profile is appropriately modifisd

T-T, =4 (V) (30a)

WhereU :;—;Z—E(RZ - rz)

T, = wall temperature

Substituting Eqgn. (27) in Egn. (30a) we get,
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Now substituting Eqn. (31) in Eqgn. (29), we get
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As wall temperature variation throughout the cyidevery
nominal, it can be considered to be almost const@hus
applying the condition, equation reduces to,
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Rearranging the above equation
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Substituting the condition at the boundary, thatisvall r=R,

the above equation simplifies into
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Rearranging the above equation
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3.2 Weissenber g-Rabinowitsch Correction

Since thermoplastic melt is non-Newtonian type, elrer
inequality is implicit inabove Newtonian constitegirelations,
reasoning wallshear rate differencefor non-Newtonia
constitutive relations. Further to equate true nemdonian
viscosity is obtained from Weissenberg-Rabinowitsch
correction [11]. Accordingly correct shear ratetet wall for a
non-Newtonian thermoplastic could now be calculdt®an

below equation,
diny,
dinz,

. 11
Vr :ya|:2[3+

The term in square brackets is the WeissenbergrRuailitisch
(WR) correction, by correcting apparent shear taterue

(35)

shear rate, viscosity becomes obvious as it isdtie of shear
stress at the wall to true shear rate at the vialiecapillary.

H=—— (36)
Vr

Accordingly viscosity for axisymmetric flow in tesyof wall

shear stress and apparent shear rate is

T (3n+1)"
:.—R(—j (37)
VoL 4n
. Lo dinr,
Where n= power law index/shear thinning index Tins
ny,

For n=1 the true and apparent viscosity valuesigestical.
For shear-thinning (Pseudo- plastic) n<1, this reedat for
aqueous thermoplastic melts, true shear rate waluldys be
greater than apparent shear rate [12]. Thus Eqh y®uld
now be,

L= ,u[ 4n)
°\3n+1

Wherep, =

(38)

Apparent viscosity

Thus adopting Weissenberg-Rabinowitsch correction i
equation (33) the non-Newtonian behaviour of polymelt is
accommodated.

4. MATHEMATICAL VALIDATION OF THE
RUNNER EQUATION USING DIMENSIONAL
ANALYSIS

Dimension of all physical parameters being a unique
combination of basic constituting physicalquangfion can
be expressed in terms of the fundamental dimengmmisase
dimensions)M, L, and T — also these form 3-dimensional
vector space.ltmandates strategic relevance tacehai data
and isadoptedherein to deduce the credibility of
derivedequations and thereon computations. Its rbasic
benefit beinghomogeneity i.e., only commensuralgatdons
could be substantiated by havingidentical dimersimm either
sides. Accordingly dimensional analy¢éso referred as Unit
Factor Method)s adapted to characterising Egn. (33),

T= k=6"

p:k_%: M3
m
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Upon simplifying
_ k92 . kQZ _ k92 . kQZ
m’-g’ m-g m- $ m- §
kg®
- m -

Since LHS = RHS, Runner equation has been verified

dimensionally.

CONCLUSIONS

This manuscript features a step by step derivatevards a
computational model for determining runner dimensia§ a

plastic injection mould. On the basis of governaguations,
Weissenberg-Rabinowitsch correction for non-Newdani
nature of thermoplastic melt Eqn. (33) was derivas] a

function of thermoplastic melt properties such ssasity and
density, injection moulding machinespecificatiordsuas

maximum injection pressure and nozzle tip tempeea@s

well as temporal parameter that feature the maulgréssion
in totality owing to processing dynamics. Ultimatelve

believe Eqn. (33)computational model would offedefinite

value of runner dimension that might still divefgem perfect

or ideal design owing to computational rigour.
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GREEK SYMBOLS
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T Shear stress N/ m?

H True Viscosity N-s/n?
Uy Apparent viscosity N-s/n?
@ Viscous dissipation function
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