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Abstract 
In the present numerical study, the two dimensional diffusion equations are converted to a system of linear equations using finite-
volume method. The system of equations is solved by a direct method. For the entire process a computer code is developed in Matlab.  
 
In the second part of the present study, the computer codes developed for solving diffusion equation is then applied to a series of 
model problems. These problems contain features found in more complicated engineering situations. The problems are distinguished 
by their different boundary conditions, and by the variation of the source term and diffusivity in the domain. 
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1. INTRODUCTION 

List of Symbols 

Cv            specific heat capacity at constant volume 
i              internal (thermal) energy   
p             pressure 
R            universal gas constant 
S             source term 
SMx         x-component momentum source 
SMy           yy-component momentum source 
SMz           z-component momentum source 
T           temperature 
t            time 
u           velocity vector 
u           x-component velocity 
v          y-component velocity 

w         z-component velocity 
 
Dimensionless parameters 
 
Greek Symbols 
ρ        density 
μ        viscosity 
φ       general variable 
Ф       dissipation function 
Г       diffusion coefficient 
 
The conservative or divergence form of the system of 
equations which governs the time-dependent three 
dimensional fluid flow and heat transfer of a compressible 
Newtonian fluid is written in table 1 

 
Table 1: Governing equations of the flow of a compressible Newtonian fluid 
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It is clear from Table 1 that there are significant 
commonalities between the various equations. If we introduce 

a general variableφ , the conservative form of all fluid flow 

equations, including equations for scalar quantities such as 
temperature and pollutant concentration etc., can be usefully 
written in the following form   

 
 

 
Where Г = diffusion coefficient, S = source term 
 
The above equation is the so-called transport equation for 

propertyφ . The dependent variableφ can stand for a variety 
of different quantities, such as the mass fraction of a chemical 
species, the temperature, a velocity component etc. 
Accordingly, for each of the variables, an appropriate meaning 
will have to given to the diffusion coefficient, Г 
 

Table 2 (φ, Г and s) in General Transport Equation to stand 
for different equations 

 
Equations φ  

Г S 
 

Continuity 1 1     0 
 

x-momentum u μ 
− ∂p

dx  
 

y-momentum 
 

v μ 
− ∂p

dy  
 

z-momentum w μ 
− ∂p

dz  
 

Energy T k i 
 

 
In this paper, we develop the finite volume method by 
considering the simplest transport process of all: pure 
diffusion in the steady state. The governing equation of steady 
state diffusion can easily be derived from the general transport 

equation for property φ  by deleting the transient and 
convective term. This gives  

 

                                                              (1) 
 
The two dimensional diffusion equation in Cartesian coordinates is 
 

                                         (2) 
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We seek the solution φ(x,y) to the eqn (2) in a rectangular 
region subject to appropriate boundary conditions. 
 
 
2. FINITE VOLUME MESH 

Figure 1 depicts a rectangular domain. The domain is divided 
into non-overlapping control volumes by the dashed lines that 
define the boundaries of the individual control volumes. The 
pattern created by the lines is called the computational grid or 
mesh. In Figure 1 the control volumes are square, but this is 
not required. At the center of each control volume is a node. A 
general nodal point is identified by P, its neighbors, the nodes 
to the west and east, are identified by W and E whereas the 
nodes to the north and south are by N and S. The west and east 
side faces of the control volume are referred as w and e 
whereas north and south as n and s.  Two sets of grid lines can 
be identified: the grid lines (dashed) that define the control 
volume faces, and the grid lines (solid) that define the 
locations of the nodes.  
 

 
 

Fig1: A part of two-dimensional grid 

 
Regardless of the grid spacing P is always located in the 
geometric center of its control volume.  

 
                                                    (3) 
 
In these expressions it is crucial to distinguish between upper 
and lower case letters used as sub-scripts. Lower case 
subscripts refer to the locations of the control volume faces. 
Upper case sub-scripts refer to the locations of the nodes.  
 
3. UNIFORM AND BLOCK-UNIFORM MESHES 

For many problems either a uniform or block-uniform mesh 
are suitable. We define a uniform mesh to have uniform 
control volume widths in any one coordinate direction. The 
widths of the control volumes in different directions need not 
be uniform. This situation is depicted in the left hand side of 
Figure 2 where Δx ≠ Δy, but Δx is same for all control 
volumes. For a uniform mesh, the x, xu, y, and yv vectors are 
computed in fvUniformMesh. 
 
A block-uniform mesh is shown in the right hand side of 
Figure 2. In a block-uniform mesh, the calculation domain is 
divided into a number of panels in the x and y direction. The 
intersections of these panels define rectangular blocks. The 
width Δx of control volumes is uniform within an within an x-
direction panel, and adjacent panels can have different Δx. 
Similarly, Δy is uniform within a y-direction panel, but may 
vary from panel to panel. The fvUniBlockMesh function is 
used to define block-uniform meshes. 
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Fig2: Uniform and block-uniform meshes. 
 
4. DISCRETISATION 

Concept: Transferring continuous models and equations into 
discreet counterparts. 
 

The key step of the finite volume method is the integration of 
the governing equation over a control volume to yield a 
discretized equation at its nodal point P. When eqn (2) is 
formally integrated over the control volume we obtain  

 

         (4) 
 
So, noting that Ae = Aw =Δy and An = As = Δx, we get 
 

    (5) 
 

 

This equation represents the balance of the generation of φ  in 
a control volume and the fluxes through its cell faces. Now we 

assume linear approximation to calculate gradients (hence 
fluxes) at the control volume aces: 
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By substituting the above expressions into eqn (4)  we obtain 
 

 
         (6) 

 
When the source term is represented in linearized 

form , this equation can be re-arranged 
as   

      (7) 
 
Equation (6) is now cast in the general discretised equation form for interior nodes 
 

               (8) 
Where 
 

 

4.1 Solution of equations 

Discretized equations of the form (7) must be set up at each 
nodal point in order to solve a problem. For control volumes 
that are adjacent to the domain boundaries the general 
discretized equation (7) is modified to incorporate boundary 
conditions. The resulting system of linear algebraic equations 

is then solved to obtain the distribution property φ at nodal 
points. 
 
4.2 Matlab Codes 

This section describes a set of Matlab routines for the solution 
of eqn (1). The generic Matlab functions are listed in Table 3. 
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Table 3: A set of Matlab routines used to solve Equation (1). 
Main Task Matlab code Description 

 
Define mesh and 
boundary conditions  

uniformmesh.m 
 
 

Compute the location of cell centers and cell interfaces for a 
group of cells with uniform size.  
 

blockuniformmesh.m Compute the location of cell centers and cell interfaces for a mesh 
consisting of blocks that contain uniform meshes.  

Compute FV 
coefficients for 
interior cells 

coef.m Compute the neighboring finite volume coefficients (aE, aW, aN, 
and aS) for all interior control volumes.  
 

Adjust coefficients 
for boundary 
conditions. 

bc.m Modify finite volume coefficients and source terms to include the 
effect of boundary conditions. The final value of aP is also 
computed. 
 

Assemble and solve 
the system of 
equations 

amatrix.m Store the finite volume coefficients aE, aW, aN, aS, and aP for all 
nodal points. 
 

Compute boundary 
values and/or fluxes 
Plots 

postprocess.m The dependent variable is stored in a matrix suitable for use with 
Matlab contour and surface plotting routines. 

 

 

4.3 Model Problems 

The computer codes developed for solving diffusion equation 
is then applied to a series of model problems. These problems 
contain features found in more complicated engineering 
situations. The problems are distinguished by their different 
boundary conditions, and by the variation of the source term 
and diffusivity in the domain. 
 
The model problems require solution of Equation (1) on a 
rectangular domain 
 

 
 
4.3.1 Model Problem 1: A Membrane Deflection 

Problem (Г=1) 

We consider the transverse deflection of a uniformly tensioned 
membrane which is subjected to uniform pressure. The 
transverse deflection u for a membrane which has zero 
deflection on a boundary L satisfies the differential equation 

          (9) 
 
Where γ is a physical constant This equation is comparable 

with eqn(1) where φ γ= = =u S, ,Γ 1 . Properties of 
harmonic functions [4] imply that the differential equation is 
satisfied by a series of the form 
 

 
                                                              (10) 
 
Where z = x + ıy and constants cj are chosen to make the 
boundary defection as small as possible, in the least squares 
sense. As a specific example, we analyze a membrane 
consisting of a rectangular part. The plot in Figure 3 is 
produced by the function membrane.m (with γ =2) which 
agrees well with equation (10) using a twenty-term series. 
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Fig3: Solution to model problem 1on a 25 × 25 mesh 
 
Note that the gradient of the surface is zero at the centre and 
largest near the boundary. Consequently, the tangential stress 
will be smaller in the middle and larger at the edges. 
 
4.3.2 Model Problem 2: Plate Deflection (Г=1) 

Civil engineers are sometimes asked to determine the 
deflection of mechanical structures under various loads. As an 
illustration, we consider the problem of computing the 
deflection of a rectangular plate that is subject to a distributed 
area load f. Suppose the plate is simply supported along the 
edges, which means that both the deflection and slope of the 
plate are zero along the edges. If u(x, y) denotes the deflection 
of the plate at coordinates (x, y), the plate can be described by 
the following fourth-order partial differential equation [5] 
 

∂
∂

∂
∂ ∂

∂
∂ α

4

4

4

2 2

4

4
2

u

x

u

x y

u

y

f+ + =
 

                                                                    (11) 
 
Here the parameter α, called the flexural rigidity of the plate, 
depends on such things as the plate thickness and the modulus 
of elasticity of the material. 
 

The plate deflection equation is roughly similar to Poisson’s 
equation, but it differs in that it is of higher order and it 
includes a mixed partial derivative term. One way to approach 
its solution would be to develop finite difference formulas 
suitable for this class of equation. However, because of the 
special perfect-square structure of, an alternative approach is 
available. In particular, the above equation can be 
reformulated as a sequence of two Poisson problem. Let v (x, 
y) denotes a new intermediate variable defined as    
 

v
u

x

u

y
= +∂

∂
∂
∂

2

2

2

2

 
                                                                                  (12) 
 
applying the Laplacian operator to both sides in eqn (12), we 
find that the that (11) can be recast in terms of v as   
 

∂
∂

∂
∂ α

2

2

2

2

v

x

v

y

f+ =
 

                                                                              (13) 
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We find v (x, y) by solving (13) subject to the appropriate 
boundary conditions. Then, using (12), the deflection u(x, y) 
can be found by solving  
 

 

∂
∂

∂
∂

2

2

2

2

u

x

u

y
v+ =

 
 

In this way, the original fourth-order problem in (11) is 
transformed into a sequence of two second-order Poisson 
problems. To make the problem specific, suppose the plate is a 
= 3 m by b = 3 m, the area load on the plate is f = 2000 N/m2 
and the flexural rigidity is α = 1.5 × 104 m/N. The boundary 
conditions for the plate that is simply supported along the 
edges are u(x, y) = v(x, y) = 0 along the boundary. The code 
plate.m gives the plot in Fig 4.  
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Fig 4 Plate deflection on a 15 × 15 mesh 
4.3.3 Model Problem 3: Electrostatic Potential Due to 

a Dipole (Г=1) 

The electrostatic potential surrounding the dipole can be 
modeled by the Poisson equation 
 

∂
∂

∂
∂

ρ
ε

2

2

2

2

u

x

u

y p

+ = −
 

                                                                                            (14) 
 
Here u(x,y) is the electrostatic potential, in volts, at 
coordinates (x,y). The parameters εP is the permittivity of the 
material, and ρ (x,y) is the charge density. This equation is 

comparable with eqn(1) where 

φ ρ
ε

= = =u S
p

, ,Γ 1
.  

Suppose the electrostatic potential is to be determined over a 
rectangular region of width a = 2 cm and length b= 2 cm. Let 
the charge density be zero everywhere except near the point 
(0.8, 0.8), where there is a positive charge, and the point (1.2, 
1.2), where there is an equal negative charge. 
 
             ρ (0.8, 0.8) = - ρ (1.2, 1.2) = 10-8 C/m2 
   
Suppose the voltage along the boundary of the rectangular 
region is zero and the medium is air for which . ε0 = 8.9 × 10-
12 C2/N-m2. The code dipole m produces the plot in Fig 5 
.
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Fig 5 Electrostatic Potential Due to a Dipole on a 20 × 20 mesh 
 
4.3.4 Model Problem 4: Fully-Developed Flow in a Rectangular Duct (Г=μ) 

 
 

Fig6: Two possible calculation domains (shaded regions) for fully-developed flow in a rectangular duct. 
Figure 6 shows two representations of the cross section of a 
rectangular duct. For simple fully-developed flow the 
governing equation for the axial velocity w is 
 

 
                                                                 (15) 
 
The code for solving Equation (1) can be used to solve the 
above equation by making the following definitions 
 

 
 
For the full duct simulation depicted on the left hand side of 
Figure 6, the boundary conditions are no slip conditions on all 
four walls. 
 

 
 
For the quarter duct simulation depicted on the right hand side 
of Figure 6, the boundary conditions are no slip conditions on 
the solid walls (x = Lx and y = Ly) 
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And symmetry conditions on the other two planes 
 

 
 
The code ductflow.m produces the plot in Fig 7. 
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Fig7: Solution to model problem 4 on a 10 × 10 mesh. 
 

 
CONCLUSIONS 

The basic conservation equations can be written in the form of 

a differential equation for a general variableφ . The concept of 
discretization can be used as a tool to solving these differential 
equations over a domain of interest. Finite Volume Method 
can be used to find the discrete solution of diffusion problems. 
 
Concept of Finite Volume Method  

• Subdivide the problem domain into non overlapping 
control volumes 

• Integrate the governing equation over each of these 
control volumes. 

• Representative value of variable = value of the 
variable at the geometric centre of CV 

• Piecewise profiles expressing the variation of φ 
between the grid points are used to evaluate the 
integrals. 

• Discretized equation obtained in this manner, 
represents the conservation principle for the finite 
control volume. 
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