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Abstract
In the present numerical study, the two dimensiaifilision equations are converted to a systeningfal equations using finite-
volume method. The system of equations is solvadilvgct method. For the entire process a compatele is developed in Matlab.

In the second part of the present study, the coenprddes developed for solving diffusion equat®then applied to a series of
model problems. These problems contain featuresdfau more complicated engineering situations. preblems are distinguished
by their different boundary conditions, and by Hagiation of the source term and diffusivity in themain.
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1. INTRODUCTION w z-component velocity

List of Symbols Dimensionless parameters

C, specific heat capacity at constant volume

[ internal (thermal) energy Greek Symbols

p pressure P density

R universal gas constant H viscosity

S source term ¢  general variable

Suix X-component momentum source ® dissipation function

Swy yy-component momentum source T diffusion coefficient

Svz Z-component momentum source

T temperature The conservative or divergence form of the system o
t time equations which governs the time-dependent three
u velocity vector dimensional fluid flow and heat transfer of a cosgsible

u X-component velocity Newtonian fluid is written in table 1

Y y-component velocity

Table 1. Governing equations of the flow of a compresshbsvtonian fluid

dp ) -

Mass r + div(pm) =0

X-Omentum % + div{pum) = — % + div(p grad w) + Syx
a & .

y-momentum —-{';—VJ + div(pwa} = — E‘-O + div(p grad v) + Sy
9 pw , ap |, .

zZ-momentum (;i. ) +div(pwua) = — a3t divip grad w) + S

Internal energy Q";;%) +div(pin) = —pdiva + div(k grad T) + ® + 5
Equations of state p=pp. Thandi=ip T)

e.g. perfect gas

p=pRT and i = C,T
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It is clear from Table 1 that there are significant
commonalities between the various equations. lintduce

a general variabl@, the conservative form of all fluid flow

equations, including equations for scalar quamtitiech as
temperature and pollutant concentration etc., camugefully
written in the following form

Time rate of
change of ¢ m
control volume

Net flux of ¢ due
to convecton 1o
control volume

Netrate of
creation of @

Net flux of ¢ due
to diffusion mto _
control volume mside confrol

5 volume

\

N 1

L

0

ot

(p9)+V - (pug)

kY I|I
3 \

V.(TV@)+S

Wherel = diffusion coefficient, S = source term

The above equation is the so-called transport émudbr

property¢ . The dependent variabfecan stand for a variety
of different quantities, such as the mass fractiba chemical
species, the temperature, a velocity component
Accordingly, for each of the variables, an appraf@imeaning
will have to given to the diffusion coefficierit,

etc.

Table?2 (¢, I and s) in General Transport Equation to stand
for different equations

Equations ¢ r S

Continuity 1 0

X-momentum u u 79
dx

y-momentum % u 79
dy

z-momentum w 1 7
dz

Energy T k i

In this paper, we develop the finite volume methiog
considering the simplest transport process of allire
diffusion in the steady state. The governing equratif steady
state diffusion can easily be derived from the galnteansport

equation for property¢ by deleting the transient and
convective term. This gives

div(l” grad ¢) + Sy =0

The two dimensional diffusion equation in Cartestanrdinates is
¥}
or

i c

¢ Lo
ox chy

@)

+5=0

)
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We seek the solution(x,y) to the eqn (2) in a rectangular
region subject to appropriate boundary conditions.

2.FINITEVOLUME MESH

Figure 1 depicts a rectangular domain. The donsutivided

into non-overlapping control volumes by the daslieeks that
define the boundaries of the individual controlurakes. The
pattern created by the lines is called the comymutak grid or

mesh. In Figure 1 the control volumes are squaue this is

not required. At the center of each control volima node. A
general nodal point is identified by P, its neigisydhe nodes
to the west and east, are identified by W and Eredeethe
nodes to the north and south are by N and S. Tisé avel east
side faces of the control volume are referred asand e

whereas north and south as n and s. Two setscfiges can
be identified: the grid lines (dashed) that defthe control

volume faces, and the grid lines (solid) that defithe

locations of the nodes.

ia P
wl Pode .
" b @ !
R R
b

.
PP A— .
.

.
sssssidesssiabkasss
.
‘

RN (-

Figl: A part of two-dimensional grid

Regardless of the grid spacing P is always locatethe
geometric center of its control volume.

Az

Fp — .. = P ey — =
.|” 'I"\'J 2 .Ir:I 2
Ay

Hp—Ys = UYn—UF= T

3

In these expressions it is crucial to distinguistween upper
and lower case letters used as sub-scripts. Loveese c
subscripts refer to the locations of the contrdluwte faces.
Upper case sub-scripts refer to the locations @hibdes.

3. UNIFORM AND BLOCK-UNIFORM MESHES

For many problems either a uniform or block-uniformesh
are suitable. We define a uniform mesh to have oomif
control volume widths in any one coordinate directi The
widths of the control volumes in different direct®oneed not
be uniform. This situation is depicted in the lefind side of
Figure 2 whereAx # Ay, but Ax is same for all control
volumes. For a uniform mesh, the x, xu, y, and ggtars are
computed in fvUniformMesh.

A block-uniform mesh is shown in the right hand esidf
Figure 2. In a block-uniform mesh, the calculatawmain is
divided into a number of panels in the x and y aion. The
intersections of these panels define rectangulackisl The
width Ax of control volumes is uniform within an within an
direction panel, and adjacent panels can have rdiffeAx.
Similarly, Ay is uniform within a y-direction panel, but may
vary from panel to panel. The fvUniBlockMesh fumctiis
used to define block-uniform meshes.
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Uniform Mesh Block-Uniform Mesh
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Ax Lxl, nx, Lx,. nx,
X
Fig2: Uniform and block-uniform meshes.
4. DISCRETISATION The key step of the finite volume method is thegnation of

the governing equation over a control volume toldyia
discretized equation at its nodal point P. When é2nis
formally integrated over the control volume we abta

(8o 3l [

ConceptiTransferringcontinuousmodels and equations into
discreetcounterparts.

AV @
So, noting that A= A, =Ay and A, = As = AX, we get
A o¢
[ede|l =— | =Ty Ap| —
reaG) - ron(a) )
+ [1“,, A, (ﬂ—¢) - r,ﬁs(a—"b) ] 4+ SAV =0
%/ /s (5)

assume linear approximation to calculate gradighence

This equation represents the balance of the geoerat ¢ in fluxes) at the control volume aces:

a control volume and the fluxes through its cetefa Now we
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Flux across the west face = I', A, ﬂd’ =y Ay M
&l’ w Oxpp
7, _
Flux across the east face = I', A, _? —T, A, (e — @p)
ox|, OxpE
(i -
Flux across the south face = I'; 4, ¢ =T, A, (@ — ¢5)
ay 5 éySP
Flux across the north face = I',, 4, 99| _ T, A, (Pn — Pp)
l'jy n *'5.}’PH

By substituting the above expressions into eqnwé)obtain

When the source term is represented in linearized

(¢E ‘ﬁp} -T, A, [‘pP ¢W] r, (‘ﬁﬁ - ¢P) form SAY = Su + SP‘i’P, this equation can be re-arranged
E E L3 n
Oxpg dxyp OypN as
—F,-A ('¢P ¢S]+SAV =
Oysp
(6)
rw Aw re At r.i' As rn An )
+ -5
( Sxwp tifP.E dyse  dvpn | ¢r

r. I, A
Oxwp )b + Oxpg

I
Yoo+ (G

A |
o (o,

(@)

Equation (6) is now cast in the general discretesgahation form for interior nodes

appp = awy + APy + asPs + andy + Sy

(8)

Where
aw ag as ay ap
A
A, |Ted. (Ted, | Tudn aw + ag +as +an — 5,
dxwp Oxpg OYsp dypn

4.1 Solution of equations

Discretized equations of the form (7) must be setueach
nodal point in order to solve a problem. For cont@umes
that are adjacent to the domain boundaries the rgene
discretized equation (7) is modified to incorporatmindary
conditions. The resulting system of linear algebeguations

is then solved to obtain the distribution propeptyat nodal
points.

4.2 Matlab Codes

This section describes a set of Matlab routinedHersolution
of eqgn (1). The generic Matlab functions are listedable 3.
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Table 3: A set of Matlab routines used to solve Equatign (1

Main Task

Matlab code

Description

Define mesh and
boundary conditions

uniformmesh.m

Compute the location of cell centers and cell fais for a|
group of cells with uniform size.

blockuniformmesh.m

Compute the location of cellteemand cell interfaces for a mesh
consisting of blocks that contain uniform meshes.

el SSN: 2319-1163 | pl SSN: 2321-7308

Compute FV coef.m Compute the neighboring finite volume caiéiints (aE, aw, aN,
coefficients for and aS) for all interior control volumes.

interior cells

Adjust coefficients bc.m Modify finite volume coefficients and souregrhs to include the
for boundary effect of boundary conditions. The final value d® & also

conditions. computed.

Assemble and solve | amatrix.m Store the finite volume coefficients aky, aN, aS, and aP for al
the system of nodal points.

equations

Compute  boundary postprocess.m The dependent variable is storedmatex suitable for use with
values and/or fluxes Matlab contour and surface plotting routines.

Plots

4.3 Modd Problems

The computer codes developed for solving diffustguiation
is then applied to a series of model problems. &lpesblems
contain features found in more complicated enginger
situations. The problems are distinguished by thiifierent
boundary conditions, and by the variation of tharse term
and diffusivity in the domain.

The model problems require solution of Equation ¢h) a
rectangular domain

EP 1:- I E’ LJ’

0<y<lL,

4.3.1 Model Problem 1: A Membrane Deflection
Problem (I'=1)

We consider the transverse deflection of a unifgrmhsioned
membrane which is subjected to uniform pressuree Th
transverse deflectioru for a membrane which has zero
deflection on a boundatysatisfies the differential equation

8u  H%u

{‘;}.-J.-E i

—_— F !

o2

©)

Wherey is a physical constant This equation is comparable

with egn(l) where ¢=ul =1S= V. Properties of
harmonic functions [4] imply that the differentiefuation is
satisfied by a series of the form

i ==y

bt 2 i
|1| + Z{‘.J real(='~1)

=1
(10)

Wherez = x + 1y and constants;are chosen to make the
boundary defection as small as possible, in thstlequares
sense. As a specific example, we analyze a membrane
consisting of a rectangular part. The plot in Fgu is
produced by the function membrane.m (with=2) which
agrees well with equation (10) using a twenty-tegries.
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Fig3: Solution to model problem 1on a 25 x 25 mesh

Note that the gradient of the surface is zero atcd#ntre and
largest near the boundary. Consequently, the tdiadjestress
will be smaller in the middle and larger at the esig

4.3.2 Model Problem 2: Plate Deflection (I'=1)

Civil engineers are sometimes asked to determine th

deflection of mechanical structures under vari@agls. As an
illustration, we consider the problem of computitige
deflection of a rectangular plate that is subjeca Wistributed
area load f. Suppose the plate is simply suppaatedg the
edges, which means that both the deflection angestd the
plate are zero along the edges. If u(x, y) dentitesieflection
of the plate at coordinates (X, y), the plate caméscribed by
the following fourth-order partial differential egtion [5]

@Jr du Jdu_f
&4

2 + =
d(Z WZ W4 a

(11)

Here the parameter, called the flexural rigidity of the plate,

depends on such things as the plate thicknesshanaiddulus
of elasticity of the material.

The plate deflection equation is roughly similarRoisson’s
equation, but it differs in that it is of higherder and it
includes a mixed partial derivative term. One wawgpproach
its solution would be to develop finite differené@rmulas
suitable for this class of equation. However, bseaaf the
special perfect-square structure of, an alternajweroach is

available. In particular, the above equation can be

reformulated as a sequence of two Poisson prolletv (X,
y) denotes a new intermediate variable defined as

J’u  J°u
d(Z + 4/2

(12)

applying the Laplacian operator to both sides in &), we
find that the that (11) can be recast in terms a$ v

v s ov _f

X XN a

(13)
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We find v (X, y) by solving (13) subject to the appriate
boundary conditions. Then, using (12), the deftecti(x, y)
can be found by solving

’u u _
0‘5(2 + 0‘y2 -

\"

0.05
0.04
0.03 |
0.02 |

0.01 |

wo
I

In this way, the original fourth-order problem i1} is
transformed into a sequence of two second-ordessBoi
problems. To make the problem specific, supposeldte is a
=3 mbyb =3 m, the area load on the plate i2D80 N/nf
and the flexural rigidity ist = 1.5 x 16 m/N. The boundary
conditions for the plate that is simply supportddng the
edges are u(x, y) = v(x, y) = 0 along the boundahe code
plate.m gives the plot in Fig 4.

Fig 4 Plate deflection on a 15 x 15 mesh
4.3.3 Model Problem 3: Electrostatic Potential Dueto

aDipole (I'=1)

The electrostatic potential surrounding the dipaokn be
modeled by the Poisson equation

J’u +dzu __P

X K €

p
(14)

Here u(x,y) is the electrostatic potential, in gpltat
coordinates (x,y). The parametegsis the permittivity of the

material, andp (x,y) is the charge density. This equation is

p=ur=1s="*
comparable with eqn(l) where €p

Suppose the electrostatic potential is to be detenover a
rectangular region of width a = 2 cm and lengthZbem. Let
the charge density be zero everywhere except meapdint
(0.8, 0.8), where there is a positive charge, &edpbint (1.2,
1.2), where there is an equal negative charge.

p(0.8,0.8)=p(1.2,1.2) =18 C/n?
Suppose the voltage along the boundary of the mgatar

region is zero and the medium is air for whielj = 8.9 x 10
12 CYN-m?. The code dipole m produces the plot in Fig 5
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Fig 5 Electrostatic Potential Due to a Dipole on a 220xmesh

4.3.4 Model Problem 4: Fully-Developed Flow in a Rectangular Duct (I'=p)

Full Duct Quarter Duct

| i
i

I x

|_‘ i |

x

Fig6: Two possible calculation domains (shaded regitrsiully-developed flow in a rectangular duct.

Figure 6 shows two representations of the crossoseof a dp
rectangular duct. For simple fully-developed flovhet O =w, ['=p (= constant), §=_—
governing equation for the axial velocity w is dz
2 ol
i d"w e &w . dj — 0 For the full duct simulation depicted on the lefind side of
f ar2 ﬁlu'ﬂ dz Figure 6, the boundary conditions are no slip cooal on all
. four walls.
(15)
il AW — il £ — i — ¥ \
The code for solving Equation (1) can be used fgesthe w(z.0) = w(z,Ly) = w(l,y) = w(Le,y) =0.  (full duct)

above equation by making the following definitions

For the quarter duct simulation depicted on thitritgand side
of Figure 6, the boundary conditions are no slipdittons on
the solid walls (x = Land y = L)
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w(Ly,y) = wlz,L;) =0  (quarter duct) Qul _ Ou — 0.
dri,_o Jdy y=0
And symmetry conditions on the other two planes

The code ductflow.m produces the plot in Fig 7.

Fig7: Solution to model problem 4 on a 10 x 10 mesh.
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* Representative value of variable = value of the
variable at the geometric centre of CV

* Piecewise profiles expressing the variation @f
between the grid points are used to evaluate the
integrals.

» Discretized equation obtained in this manner,
represents the conservation principle for the dinit
control volume.

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 55




