
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 29

TEST CASE PRIORITIZATION USING HYPERLINK RANKING-

A GRAPH THEORY BASED APPROACH

Krithika L.B 1, Selvakumar R 2, Anand Mahendran3

1Assistant Professor, SITE, VIT University, Vellore, India, krithika.lb@vit.ac.in
2Senior Professor, SAS ,VIT University,Vellore India, rselvakumar@vit.ac.in
3Associate Professor,SCSE, VIT University,Vellore India, manand@vit.ac.in

Abstract

Era of cloud computing where majority of the application is becoming web based enterprise computing. User prefer online web
application for easy of use and business continuity [1]. Software companies have come up in huge numbers for developing web based
enterprise application. Testing is an integral part of any software company which requires more effort. Enterprise applications are
complex and navigation is largely based on hyperlink connecting the web pages. Testing phase mostly associated with time constrain
to accomplish the task associated in this phase. Main activity of testing phase is execution of test case to test the application.
Exhaustive testing is not possible and release a software system without testing the entire application is risk [2]. This paper
demonstrates how graph theory can be used to prioritize the test case execution.

Keywords: Testing, Graph theory application

--***----------------------------- ---

1. INTRODUCTION

Software testing immense challenges is that extensive testing
is not feasible. Planned time for test phase would often get
crunched into shorter deadline and release date, due to unseen
delay in the earlier phase of software development life cycle
[3].Testing activities in test phase are dependent on the test
scenarios and test case written for each scenario.

 Tester lead by team leader executes the test case every time
the testing phase commences and tries to finish the predefined
number of test case to test the application. Test scenarios and
associated test case changes are associated with effort, along
with the evolving application under test. Below is the
Reference Test Case Specification Template. (IEEE 829-
1998)[4][5],

Table1: Partial test case template representing only required
attribute of the paper

Test
case
Id

Test
Scenario

Test
Case

Test
Steps

Result

Regression testing is a major part of testing phase. Regression
testing is to ensure that a change introduced into the software
because of new addition or bug fix dose not impact the
existing functionality of the system. Build regression and final
regression are the two variants of regression testing.

Build regression is a testing that happens without major
change and the system is still expecting development. Final
regression is the regression testing that happens before the
system goes live after many changes to the system.

Graph theory is an area of mathematics that deals with entities
(called nodes) and the connections (called links) between the
nodes [6][7].Test case prioritization can help to take strategic
decision on sequence order [8] but these are static in nature
and require revisit every build. In this paper, graph theory is
used to model the new approach ‘Test case prioritization using
Hyperlink ranking’. This model is more dynamic and
accommodates changes dynamically.

2. PROBLEM

Building regression happened after ever new addition to the
system. In other words, new features added to the old version
between two milestones in a project are carried out to ensure
that the system works as expected. The questions that
challenges the research at crunching deadline are as below [9],

(a) Do we require executing the regression test suite every
build?

The answer is quiet simple, yes

(b) Is there a way to optimize the effort?

We can use stakeholder input to precisely cut down effort

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 30

Irrespective to changes happening in the system the effort
required for build regression either remain constant without
change or effort grows when there is change happening in the
application. Using the generic way of testing the web
application effort remains same for every version regression
testing or may increase. Conventional procedure for testing the
application is given in four steps.

2.1 Four Steps Process:

1. Read FRD(Functional Requirement Document) and
DD(Design Document)

2. Prepare the Test scenarios
3. Write details test case for each scenarios
4. Test the application based on the detail test case.

Subsequent release with change in the application under test

• Follow Step 1 to Step 4

Subsequent release without changes in the application

• Follow Step 4

Figure 1 shows the flowchart of the above four steps. Any
software development faces the problem of deviation in effort
estimation in all phase of its life cycle.

Our focus is to reduce the effort required in subsequent
regression for web application.

Fig 1: Conventional procedure for testing the application is
given by flowchart

3. METHODOLOGY

Application we test can be represented as a graph [10]. Each
page in the application are represented as node, pages are
connected by hyperlink in each page. The connection between
the pages represents the link. The frequencies of usage
between the edges are the weight age. Every web application
is made up of screen and actions in the screen. The screens are
connected to other screen via an action or a hyper link. The
user using the application navigates through the application by
click the required hyper link to navigate between pages.

We record each user session navigation path for entire usage
time. We keep tracking and prepare a repository of user
navigation on the entire web application. Using the repository
we have the Link map of entire application. Each link is given
weight age using simple usage metric.

When a user uses the link between the nodes to navigate we
increment the count by one. Every access of the link is
increment and stored in the repository. Link graph of the
application under test and weight age is based on user
interaction data.

4. SOLUTION

In this work, a web application that has 11 pages is
considered. These pages are connected bidirectional as per the
application flow. In Figure 2, the flow starts from the home
page and depending on the user input navigation is chosen
across the page and produces the desired result.

Fig2: Page map of application under test

Application mapped is represented as a graph with link
weight. This graph helps us statically traverse the application
for experiment. Application graph and Link weight age
representation is given as follows in Figure 3,

Home page a

 page j

 page b

 page c

 page f

 page e

 page k

 page h

 page i page d

 page g

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 31

Fig 3: Application graph and Link weight age

4.1 Test case

The sequential step on how to use the application, what input
to be given and what result is expected. The deviation in the
result as prescribed in the test case is considered to be note for
forte action.

Table 2: Repository of Regression suite with link weight

Test
case Id

Test
Scenario

Test
Case

weight
age

Test
Step
s

Result

A3s1 A3S= {a},{ab},{ac} a 35 … P/F

A3s2 A3S= {a},{ab},{ac} ab 30 … P/F

A3s3 A3S= {a},{ab},{ac} ac 5 … P/F

B2s2 B2S= {b},{ba},{bf} b 60 … P/F

B2s3 B2S= {b},{ba},{bf} ba 30 … P/F

B2s4 B2S= {b},{ba},{bf} bf 30 … P/F

C3s1
C3S=
{c},{ca},{ck},{ce}

c 10 … P/F

C3s2
C3S=
{c},{ca},{ck},{ce}

ca 5 … P/F

C3s3
C3S=
{c},{ca},{ck},{ce}

ck 3 … P/F

C3s4
C3S=
{c},{ca},{ck},{ce}

ce 2 … P/F

… … … … …
J2s3 J2S= {j},{ji},{jh} jh 23 … P/F

4.2 Ranking to Links

(a)Procedure

[1] A daemon keeps listing to session at the start of
testing

[2] Page link, parent page, source page, to page and the
click through is recorded

[3] Count is incrementally store after successful session
close.

[4] Data store is a repository of historic data from start of
the project to completion.

(b)Pseudo-algorithm

 Start: session Start
 Capture LinkClickPage && session
 usage count ++ &&

session <> same Session
 Repository DataStore
 End: commit data to store

5. RESULTS

Using our approach we were able to come out with the below
scenario and test case associate with priority.

Table 3: Result

Session scenario Weight age Priority
a,b,f,g,d,i,j 160 1
a,b,f,k,h,j … …
a,b,j,k,h,j … …
a,k,h,j 61 4
a,c,e,h,j … …
a,c,k,h,j 54 6
… … …

CONCLUSIONS AND FUTURE WORK

Executing build regression is important but can be replaced
with thinner version of regression suite that is prioritized
based on end user usage. Using the usage metric we were able
to effectively reduce the number of test case and also control
bug leakage. Comparing to the full regression pack execution
for very build regression, our method requires lesser effort,
quick in identifying issues in important feature and
functionality.

Some very important scenarios are not frequently accessed. As
a result, the link weight age for those links would not be
recorded or not generated. We are currently employing test
leading assistance to identify those scenarios and manually
give weight age. In the future work we would like to have a
cumulative weight mechanism to optimize and increase
efficiency.

a

c

d

f

e

b

g

h

i

j

k

30

30

15

5

5

25

3

25

25

2 2

23

25

23

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 32

REFERENCES

[1] Miller, Michael. Cloud computing: Web-based
applications that change the way you work and collaborate
online Que publishing, 2008
[2] Myers, Glenford J., Corey Sandler, and Tom Badgett. The
art of software testing John Wiley & Sons, 2011
[3] Bresnahan, Timothy, Shane Greenstein, and Rebecca
Henderson. "Organizational Diseconomies of Scope and
Creative Destruction"
[4] Test Case Specification Template. (IEEE 829-1998)
[5] IEEE Standards Association, Software Engineering
standards, vol. 3 of Std. 1061: Standard for Software Quality
Methodology, IEEE, 1999 ed., 1999.
[6]Chartrand, Gary (1985), Introductory Graph Theory,
Dover, ISBN 0-486-24775-9.
[7]Shirinivas, S. G., S. Vetrivel, and N. M. Elango
"Applications of graph theory in computer science an
overview" International Journal of Engineering Science and
Technology 2.9 (2010): 4610-4621.
[8] Rothermel, Gregg, et al. "Test case prioritization: An
empirical study." Software Maintenance, 1999.(ICSM'99)
Proceedings. IEEE International Conference on IEEE, 1999
[9] Rothermel, Gregg, and Mary Jean Harrold. "A safe,
efficient regression test selection technique." ACM
Transactions on Software Engineering and Methodology
(TOSEM) 6.2 (1997): 173-210.
[10] Chen, Zheng, et al. "Building a web thesaurus from web
link structure." Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in
informaion retrieval ACM, 2003

