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Abstract
This paper presents a forecasting model for cowmsin time, using support vector machine (SVM) eergly one of the most
accurate predictive models.

Every construction contract contains project dea€las an essential element of the contract. Thetipeshows that a considerably
present problem is that of non-compliance of thetra@ted and real construction time. It's often ttese that construction time is
determined arbitrarily. The produced dynamic plame only of formal character and not a reflectiohtbe real possibilities of the
contractor.

First, a linear regression model has been appliethe data for 75 objects, using Bromilow’s “timest’ model. After that a support

vector machine model to the same data was apphéddsanificant improvement of the accuracy of thexlction was obtained.

Keywords construction time, construction costs, artificiaural network, linear regression, support vectorcimnae
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1. INTRODUCTION

Key data on the total of 75 buildings constructedthe
Federation of Bosnia and Herzegovina have beereateld
through field studies. Chief engineers of constanct
companies have been interviewed on contractualaahghlly
incurred costs and terms. The collected data aontai
information for the contracted and real time of stonction,
the contracted and real price of construction émete are also
data for the use of these 75 objects and for ther e
construction .

Australian Bromilow was the first who investigatdtie
relation between construction price and constructime.
From his research stems the well known “time —"cosidel
[3] Afterward the model has been confirmed in many
countries worldwide: UK, China, Malaysia, Croatia.q15],

[5].[8].[4]-

In Bosnia and Herzegovina similar research wast firs
conducted in 2008 [38]. The research included seyreaps

of objects and “time — cost” model was establisliedall
seven groups.

This paper will present the research results caeduon 75
structures constructed in the period from 1999Gb12 in the
field of civil engineering and building construatioas well as
hydro construction

Data were collected for a total of 75 structuredtbio the
Federation of Bosnia and Herzegovina in the pefiaoh 1999
to 2011 using questionnaires and interviews withti@etors.
Key data are:

* Object Type;

» Construction Year;

» Contracted And Realized Construction Time;

» Contracted And Realized Construction Price;

» Reasons For Non-Compliance Of Deadline.

From a total of 75 structures, disregard of thetremted
deadline was registered at 55 of them (73%), d&skof the
contracted price was registered at 40 structur@%of5while
simultaneously the contracted deadline and the racted
price overrun were registered at 36 structures [48%
Maximum contracted deadline overrun was 100%, amckp
68.75% while the average contracted deadline han be
exceeded for 11.55% and 2.77% for the price. Coteda
deadline reduction was registered at 1lstructutds6{%),
while simultaneously the contracted deadline aneé th
contracted price reduction was registered at 2cstres
(2.67%) [39].

Total of five different reasons for non-compliaraggpear:
e approvals and permits;
* climate;
< incomplete and inaccurate technical documentation;
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* material delivery;
e Terms of financing.

This paper presents comparison of two predictiveletsfor
construction time. We shall first present lineagression
model which has been applied to these data forigineg of
the construction time, and after that support veatachine
(SVM) predictive model applied to the same dataorSh
overview of linear regression and SVM predictivedalowill
be presented also.

2. LINEAR REGRESSION PREDICTION MODEL
FOR CONSTRUCTION PROJECT DURATION

Linear regressionis an approach to model the relationship
between a scalar dependant variableand one or more
explanatory variables denot&d The case of one explanatory
variable is calledimple linear regressiarFor more than one
explanatory variable, it is callethultiple linear regression
[35].

In linear regression data are modeled udingar predictor
functionsand unknown modgdarametersare estimated from
the data.

A linear regression model fits a linear functiorateet of data
points. The form of the function is:

Y =By + BX X, +o i B X,

WhereY is the target variabley, X,,,... X,, are the predictor
variables, andB,, 5, ,..... 3, are coefficients that multiply

the predictor variabless, is a constant.

Since linear regression is restricted to fittingekr (straight
line/plane) functions to data, it rarely works aslivon real-
world data as more general techniques suchnesral
networks which can model non-linear functions. However,
linear regression has many practical uses and abeumf
strengths. For example, linear regression analgsis be
applied to quantify the strength of the relatiopshetweenY
and thex;, to assess whick may have no relationship with Y
at all, and to identify which subsets of thecontain redundant
information about Y, also linear regression moaeks simple
and require minimum memory to implement, so theykwo
well on embedded controllers that have limited mgnspace
[24].

For the prediction of the construction time we khae
Bromilow’s “time cost“model given in Eq. (1).

T=K[C® 1)

Where:T - contracted timeC - contracted price;

K - Model parameter that is a specific way to measur
productivity because it shows the average time eddar the
construction of a monetary value;

B - Model parameters that show time dependence sfsco
change.

For the requirements of linear regression modelskadl write
this model in linear form, using logarithmic tramshation
[4], as shown in Eq. (2):

InT = InK + BInC @

The linear form of the equation allows usage of simaple
statistical procedure, i.e.,single linear regressionWe shall
determine the values of parameters K and B inrttadel.

For creating the linear regression model for praaticof the
construction time for the 75 objects, DTREG sofvar
package was used [25].

The results of the DTREG analysis of the modelpaesented
in Table 1 to Table 3 bellow.

Considering Eq. (2), variable(real time) is used as target
variable, andn(real price) as predicted variable.

From the Table 1 we can read the coefficients ef lthear
regression model, and they arB= 0.550208 (vaich is
multiplied with variable In(real pr|ce) and thenstantinK= -
2.37546and from hereK = e?

The model will be T= g237>40>%0208

Part of the data are used for training of the méalaining
data, Table 2), and part of the data are useddlatation of
the model (Table 3).

We shall estimate the accuracy of the model froensthtistics
of validation data (Table 3):

Most often used estimators of a model Rfeand MAPE. In
statistics, theoefficient of determinatiodenotedR? indicates
how well data points fit a line or curve; it is aeasure of
global fit of the model. In linear regressidk? equals the
square of Pearson correlation coefficient betwebserved
and modeled (predicted) data values of the depéendaiable.
R? is an element of [0,1] and is often interpreted tias
proportion of the response variation “explained” liye
regressors in the model. So, the vaRfe 0.73341from our
model may be interpreted: around 73% of the vamnain the
response can be explained by the explanatory ‘esalbhe
remaining 27% can be attributed to unknown, lurking
variables or inherent variability [36].

MAPE (mean absolute percentage error) is a meastire
accuracy of a method for constructing fitted timssries
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values in statistics. It usually expresses accurasy a means that the error of the model is arolib.
percentage [37]. For this modMAPE= 10.355481 which

Table — 1:Linear regression model for predicting real tinie@nstruction
which depends on real price of construction

—=========== Summary of Variables ===========:

Number Variable Class Type  Missing rows Categories
1 Number of project Unusedontinuous 0
2 use of the object Unuse@ategorical 0
3 year of construction Unusecontinuous 0
4 contracted time (days) Unusedontuous 0
5 real time of constr. (days) Unused onfhuous 0
6 difference (days) Unusecontinuous 0
7 price contracted [KM] Unused n@ouous 0
8 real price Wed Continuous 0
9 difference of prices Unusedontinuous 0
10 In(real time) Tarrge Continuous 0
11 In(real price) Pretdr Continuous 0 75

============ Linear Regression Parameters ===——=

Variable  Coefficient Std. Error t Prob(t) 95% Confidence Interval

In(real price) 0.550208 0.0509 .8P0< 0.00001 0.4484 0.652
Constant -2.37546 0.65813.61  0.00064 -3.693 -1.058
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Table-2: Statistics for training data for the linear regress
model

--- Training Data ---

Mean target value for input data = 4.7038902
Mean target value for predicted values = 4.7038902

Variance in input data = 0.8306976

Residual (unexplained) variance after model fit =
0.2753121

Proportion of variance explained by model (R"2) =
0.66858 (66.858%)

Coefficient of variation (CV) = 0.111546
Normalized mean square error (NMSE) = 0.331423
Correlation between actual and predicted = 0.817666

Maximum error = 1.7033044

RMSE (Root Mean Squared Error) = 0.5247019
MSE (Mean Squared Error) = 0.2753121

MAE (Mean Absolute Error) = 0.4108599
MAPE (Mean Absolute Percentage Error) = 9.208465Y

3. PREDICTING WITH SUPPORT VECTOR
MACHINES (SVM) MODEL
3.1. Support Vector Machines

In recent years, machine learning has become & fodat in

artificial intelligence. Support vector machinesg arrelatively
new, rapidly developing field of research - genéoainulation
for learning machines. SVMs perform exceptionallgliwon

pattern classification, function approximation, aegression
problems.

SVM is a class of learning algorithms which hasrbpeoved
in recent years to be superior to the conventiddaural
Network method for both classification and regressasks.

Support vector machine (SVM) has been first intmtl by
Vapnik. There are two main categories for suppatter
machines: support vector classification (SVC) anghpsrt
vector regression (SVR). SVM is a learning systesingl a
high dimensional feature space. It yields predictionctions
that are expanded on a subset of support vectovergion of
a SVM for regression has been proposed in 1997 dpnik,
Steven Golowich, and Alex Smola [33]. This methsdalled
support vector regression (SVR).

The SV algorithm is a nonlinear generalization &fe t
Generalized Portraitalgorithm developed in Russia in the
sixties [28], [29]. As such, it is firmly groundeih the

Table-3: Statistics for validation data used for estimatdn
the accuracy of the model

Validation Data ---

Mean target value for input data = 4.6575062

Mean target value for predicted values = 4.6797136
Variance in input data = 1.0179999

Residual (unexplained) variance after model fit =
0.2713927

Proportion of variance explained by model (R"2) =
0.73341 (73.341%)

Coefficient of variation (CV) = 0.111852
Normalized mean square error (NMSE) = 0.266594
Correlation between actual and predicted = 0.858757

Maximum error = 0.8396821

RMSE (Root Mean Squared Error) = 0.5209536
MSE (Mean Squared Error) = 0.2713927

MAE (Mean Absolute Error) = 0.462848

MAPE (Mean Absolute Percentage Error) = 10.355481

framework of statistical learning theory, ¥C theory which
has been developed over the last three decadesmyik/and
Chervonenkis [30], Vapnik [31],[32]. In a nutsheC theory
characterizes properties of learning machines wigchble
them to generalize well to unseen data.

In its present form, the SV machine was largelyefigyed at
AT&T Bell Laboratories by Vapnik and co-workers [2]1],
[91,[20], [21], [33]. Due to this industrial contexSV research
has up to date had a sound orientation towardswesdtl
applications.

In regression and time series prediction applicati@xcellent
performances were obtained [18], [10],[27],[17].sAapshot
of the state of the art in SV learning was recetaken at the
annual Neural Information Processing Systernenference
[22]. SV learning has now evolved into an activeaaof
research. Moreover, it is in the process of engerthe
standard methods toolbox of machine learning [IR][14].
[23] by Sch'olkopf and Smola contains a more intdep
overview of SVM regression.

SVM'’s are new training method which is developedthe
frame ofstructural risk minimizatio(SRM). SVM belongs to
the group okupervised learning methodBhey also belong to
the group of nonparametric models, i.e. models vitnich
parameters are not defined in advance, but themben
depends on data for training, so that the abilitthe model to
interpolate data depends on the complexity of data.
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Figure 1 shows general model of SVM which is idwitto
the general model of multilayer preceptron neuraiwork
(MLP NN). The difference is in the way of training.
Connections in the output layer are the weightsand their
meaning is identical as at NN after the training][1

For all feed-forward NNs there is an ability ofings support
vector learning (SVL) algorithms in the processladrning.
So, while the back-propagation algorithm is forirtirag
multilayer perceptron, SVL algorithm has more gene
nature, and because of that has broad applicafillg}y Data
for training consist of two sets of variables: )put
(predictor) variables;, which are being chosen arbitrary from
the input set X, and 2) response from the syste(target
variable) which belongs to the output set of ddtdn the
parlance of SVM literature, a predictor variablecaled an
attribute, and a transformed attribute that is used to ddfiee
hyperplane is calledfeature

The task of choosing the most suitable represemtadi known

asfeature selectionA set of features that describes one case

(i.e., a row of predictor values) is callegector.
SVM belongs tkernel methods.e. methods with which non-
linear learning problem is transformed in lineamgskernel

functions. This is accomplished by mapping of thgui space
into output multidimensional space. The solving thie
problem, whether it is a problem of classificatiar
regression, will be accomplished in the new muttieinsio-nal
space.

Figure 2 shows the problem of classification ofadahich in
input space is nonlinear problem. By mapping in tiesv
multidimensional space, the ability of linear sepian is
given.

An SVM analysis finds the line (or, in general, Ayplane)
that is oriented so that the margin between the@auvectors
is maximized. In the figure bellow (Fig.3), thediim the right
panel is superior to the line in the left panel.

If all analyses consisted of two-category targeiakdes with
two predictor variables, and the cluster of poiotaild be
divided by a straight line, solving the problem Wbbe easy.
Unfortunately, this is not generally the case, &MSmust
deal with (a) more than two predictor variable9,gbparating
the points with non-linear curves, (c) handling tiases where
clusters cannot be completely separated, and (dylling
classifications with more than two categories

Fig-1: General model of SVM (Kecman, 2001)
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(input space)

(feature space)

Fig-2: Mapping in multidimensional space
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Fig -3: Margins and support vectors

As we add additional predictor variables (attrilsjitehe data
points can be representedNdimensional space, and8-1)-
dimensional hyperplane can separate them.

The goal of SVM modeling is to find the optimal kyplane
that separates clusters of vectors in such a watyctses with
one category of the target variable are on onedidiee plane
and cases with the other category are on the asfhkerof the
plane. The vectors near the hyperplane arsuipport vectors
The concept of a kernel mapping function is verweidul. It
allows SVM models to perform separations even wighy
complex boundaries such as shown on Fig.4 [24] .

Fig — 4 Separation with kernel mapping

3.2. Regression using SVM

Now we shall define the basic problem of trainingr f
regression problems.

The model of machine learning hhslata for training with
which it tries to establish (“learn”) relationshigtween input
and output, expressed by some functibhe set of data for
training D is given by

D ={(x;,y;)OR"xR,i =12,...1}.

This set consists of the paifg;, y1), (%2 , ¥2),..., (X, Y1),
where inputs are n — dimensional vector¥; [JR", and the

responses of the model (outputsyy; IR has continual

values. SVM as approximation function uses sonmetfan
f(x,w), wherew are the subject of training/ln ¢ — SV
regression, the goal is to find a functibrthat has at most
deviation from the actually obtained targetsfor all the
training data and at the same time as flat as lpleg<i9].

This function presents model of non-linear regssbecause
the resulting hiperplane is non-linear function rotee n-
dimensionak- space.

Estimation of the regression model with SVM is dzh®n
estimation of the error of the approximation. Thare several
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types of functions of errors (error or loss funnjioThe most
often used isquare error(y-f)?> andabsolute error|y— f|.

Another type of error is the so called Vapnik’s gex type of
error, i.e.linear loss function with £ insensitive zone,
defined as:

if |[y- f(x,w)|<e
|y_ f(X,W)|—£‘ if |y— f(X,W)|>£
3

We can see that the error is zero if differencevbeh real
valuey and obtained (predicted) valf(@,w) is smaller than
&€ . Vapnik's function of error with £ insensitivity zone
defines tube, as it is presented on figure 5. & tphredicted
value is in the tube, the error is 0. For all otipeedicted
values, which are out of the tube, the error isuatdo the
difference between absolute value of differencewben
actual and predicted value, and the radius ofuhe £ .

0
|- f(X-W)|g={

Fix. w) Vi

Fx,w)

f - "F;

/ measured Vi

Fig-5: & - tube (Kecman, 2001)

Because of easier understanding of solving theessipn
problem using SVM (i.e. SVR), the simplest way kplain it
is to take the problem of linear regression fif$te function

f (w,x) will be linear:

f(x,w)=w'x+b (4)

We shall now present procedure of solviirgear regression
using SVMs.

In fact, in this case we want to find functib(x,w) given with
(4) , such that it approximates all paifs;,y;) with &
precision. Fig. 6 shows that situation. Becausenticith of the

2¢
tube isM, the maximal permitted deviation of pairs,y;)

in this tube will be obtained by minimizirfyv| .

[
P

Fig-6: &£ - tube when the approximation function is linear

The optimization problem presented above is diffitm solve
because it depends (an” the norm ofw, which involves a
square root. Fortunately it is possible to alter dyuation by

substituting"W” with %”W”2 (the factor of 1/2 being used

for mathematical convenience) without changing gbkition
(the minimum of the original and the modified egoiathave
the samew and b). This is a convex optimization problem.
More clearly:

T AT
minimize
_ {yi -wx, —b<e
subject to (5)
wx; +th-y <&

Because SVM are developed in the frame of SRM ¢girel
risk minimization) which tends to minimize expectésk R,
according to Vapnik, the term for empirical risk defined
first:

l |
Rénp (W,B) =5 [y =W, =B
= g (6)

| is the number of data for training. The main am3V
algorithm is to minimizeR;ﬂp and ||W|| . We shall obtain the
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regression linear hyperplanef (X,w) =w'x+b by
minimizing of the real error:

R= |l +C(X |y, = f (W) )
i=1 € (7

The above convex optimization problem is feasilblecases
wheref actually exists and approximates all pdis, y; ) with

€ precision. Sometimes, some errors are allowedodaoting
slack variablesg;, éf (we can see them also on Fig. 5 when fis
nonlinear) to cope with otherwise infeasible camistis of the
optimization problem (5), the formulation becomes:

$i :‘Yi - f(XwW)‘_f

Ei=ly —fx.w|-g (9

Now we can write the term (7) in the following w. a

Ruee =[%IIXIIZ FORELEN @

With the following constraints:

Vi-Wx-b<g+¢ i=1....)
w'x +b -yiS£+fi* i=1...)
£20 i=1..]

& =0 i=1...1 (10)

This optimization problem can be solved using fdatian of
Lagrange [19]:

L(w,b,a,a*,ai,af,ﬁi,/z*>:ngw+
| | |
+CQLE &)Y a Ty ~w'x ~bre+& ]~

Sy x oy s -

|
S BEABE)
i=1 (11)

After solving the dual regression problem, the daling
parameters which defined optimal regression hypane

f(x,w) is obtained: optimal weigh vectay, :
[
Wo =Z(ai —a;)X
i=1

And optimalby :
1 |
b, :I_Z(Yi _XiTWo)-
i=l

The best regression hyper plane is defined byeira:t
z = f(x,w) = wp' X + by,

But, the most of the regression problems doesheote linear
nature. Solving the problem with non-linear regi@ssising
SVMs is accomplished by considering the linear esgion
hyper plane in the new feature space.

The basic idea of forming SVMs for creating adtion of

nonlinear regression is to map the input vectgrsl R" from
the input space to vectors from multi dimensional future
spaceF (z= ®(x) ), where® is mapping function fronR"

to R and to solve the linear regression problem innéwe
feature space. The functi@(x) is fixed and given in advance
and is callekernel function The inputx- space is defined by
the input vectorsq; , while the future spacE (z space) is
defined by the components of the z vector. Applytimg SVM
formulation, this way of mapping allows obtainingear
regression hyper plain using training algorithmanspace. It
is expected that using this approach will lead dtvieg the
problem of quadratic optimization with limitatiorggven by
inequalities inz — space.

Many kernel mapping functions can be used — prgbabl
infinite number. But a few kernel functions havehéound to
work well for a wide variety of applications, foxample:
linear function, polynomial function, radial badisnctionand
sigmoid function The default and recommended kernel
function is theradial basis functionRBF).

There are few parameters which can be used fonitigi
during the modeling of SVM for solving regressiamigems.
The most significant are insensitivity zon® and penalty
parameteC. The both parameters are chosen by the user.

3.3. Predicting Real Time of Construction with SVM
Model

In this paper, for prediction of the real time afhstruction
time using SVM model is used the software packagEG
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[25]. DTREG offers several types of SVM models, for
classification and for regression tasks.

DTREG provides four kernel functions, linear, paymal,
radial basis function (RBF) and sigmoid (S-shap@tiere is
no way in advance to know which kernel functionl\wié best
for an application, but the RBF functio®( x; ,x) =

2
=exp (- gamma’{ X, - Xj‘ ) has been found to do best job

in the majority of cases. RBF is the default ammbremended
kernel function. The RBF kernel non-linearly mapsngles
into a higher dimensional space, so it can handidimear
relationships between target categories and pidict
attributes; a linear basis function cannot do tRisgthermore,
the linear kernel is a special case of the RBF.

There is atolerance factorthat controls when DTREG stops
the iterative optimization process. The defaultuealisually
works well, but the tolerance can be reduced toegda a
more accurate model or increase the value to redioee
computation time. This parameter is called Hyesilon value

in some implementations of SVM.

DTREG can generate SVM model giving also a reporthe
relative significance of predictor variables.

For validating a SVM model in this paper, DTREG usé
fold cross validation method. This means t&&VM models
will be constructed with\(-1)/V proportion of the rows being
used in each model. The remaining rows are thenl tse
measure the accuracy of the model. The final malélilt

using all data rows. This method has the advaraégsing all
data rows in the final model, but the validatiopé&formed in
separately constructed models.

The accuracy of an SVM model is largely dependenthe
selection of the model parameters such as C, Garetoa,
DTREG provides two methods for finding optimal paeder
values.

When DTREG uses SVM for regression problems, doiter
for minimizing total error is used to find optimphrameters
for determining optimal function value.

The SVM implementation used by DTREG is partialaséd
on the outstanding LIBSVM project by Chih-Chung €@ba
and Chih-Jen Lin [6]. They have made both thecaktand
practical contributions to the development of suppector
machines.

The results of the implementation of SVM model gsin
package DTREG for predicting the real time of ¢orion
is given bellow on Table 4 to Table 6. For the aacy of the
model it is very important how we choose the targetl
predictor variables. Considering the Eq. (2), fus tmodel, as
target variable is chosem(real time) and for predicted
variables are chosem(contracted time), In(real price) and
In(contracted price).
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Table-4: SVM model for predicting real time of construction

Target variable: In(treal time)

Number of predictor variables: 3

Type of model: Support Vector Machine (SVM)
Type of SVM model: Epsilon-SVR

SVM kernel function: Radial Basis Function (RBF)
Type of analysis: Regression

Validation method: Cross validation

Number of cross-validation folds: 10

—===—=—==—===== |nput Data ============
Number of variables (data columns): 13
Data subsetting: Use all data rows
Number of data rows: 75
Total weight for all rows: 75
Rows with missing target or weight values: 0
Rows with missing predictor values: 0

--- Statistics for target variable: In(treal time) ---
Mean value = 4.6946134
Standard deviation = 0.9319347
Minimum value = 2.7080502
Maximum value = 6.4922398

——=———=—=—=—=—=—== Summary of Variables ============

Number Variable Class Type Missing rows Categories
1 Number of project Unused Continuous 0

2 use of the object Unused Categorical 0

3 year of construction Unused Continuous 0

4 contracted time (days) Unused  @tinuous 0

5 real time of constr. (days) Unused  @tnuous 0

6 difference (days) Unused Continuous 0

7 price contracted [KM] Unused  Camuous 0

8 real price Uned  Continuous 0

9 difference of prices Unused Continuous 0

10 In(treal time) Target Continuous 0

11 In(real price) Prediot Continuous 0 75
12 In(contracted time) Predictor Continuous 0 31
13 In(contracted price) Predictor Continuous 0 75

Type of SVM model: Epsilon-SVR
SVM kernel function: Radial Basis Function (RBF)

SVM grid and pattern searches found optimal value$or parameters:
Search criterion: Minimize total error

Number of points evaluated during search = 1100

Minimum error found by search = 0.021429

Parameter values:
Epsilon = 0.001

C =127825.267
Gamma = 0.00806235
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P =0.04609048
Number of support vectors used by the model = 50

Table -5: Statistics for training data of the model

--- Training Data ---

Mean target value for input data = 4.6946134
Mean target value for predicted values = 4.6646417

Variance in input data = 0.8685023

Residual (unexplained) variance after model fit8205836
Proportion of variance explained by model (R*2).§7/630
(97.630%)

Coefficient of variation (CV) = 0.030560
Normalized mean square error (NMSE) = 0.023700
Correlation between actual and predicted = 0.988682

Maximum error = 0.6236644

RMSE (Root Mean Squared Error) = 0.1434697

MSE (Mean Squared Error) = 0.0205836

MAE (Mean Absolute Error) = 0.0923678

MAPE (Mean Absolute Percentage Error) = 2.0150009

Table -6: Statistics for validation data of the model

--- Validation Data ---

Mean target value for input data = 4.6946134
Mean target value for predicted values = 4.6650366

Variance in input data = 0.8685023

Residual (unexplained) variance after model fit =
0.0225357

Proportion of variance explained by model (R"2) =
0.97405 (97.405%)

Coefficient of variation (CV) = 0.031977
Normalized mean square error (NMSE) = 0.025948
Correlation between actual and predicted = 0.987501

Maximum error = 0.6219012

RMSE (Root Mean Squared Error) = 0.1501191

MSE (Mean Squared Error) = 0.0225357

MAE (Mean Absolute Error) = 0.0993009

MAPE (Mean Absolute Percentage Error) = 2.1722942
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As we can see from the statistic for the validatiata which
are used for estimation of the accuracy of the mdfe
0.97405 (97.405%)andMAPE = 2.1722942which is a
significant improvement over the linear model.

CONCLUSIONS

Prediction of construction time using SVM (SuppWector

Machine) model is presented in this paper. The yaisl
covered 75 objects structured in the period of 11@99011 in
the federation of Bosnia and Herzegovina. Firshveational

linear regression model has been applied to the wking the
well known “time cost” model, and after that, theegictive

model with SVM was build and applied to the samedahe
results show that the predicting with SVM was digantly

more accurate.

A Support Vector Machine is a relatively new moxdgli
method that has shown great promise at generatograte
models for a variety of problems.

The authors hope that the presented model encaussg®us
discussions about the topic presented here andhbgtwill

prove as useful for improving planning in the comstion

industry in general.
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