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Abstract 

This paper presents a forecasting model for construction time, using support vector machine (SVM) – recently one of the most 
accurate predictive models. 
 
Every construction contract contains project deadline as an essential element of the contract. The practice shows that a considerably 
present problem is that of non-compliance of the contracted and real construction time. It's often the case that construction time is 
determined arbitrarily. The produced dynamic plans are only of formal character and not a reflection of the real possibilities of the 
contractor. 
 
First, a linear regression model has been applied to the data for 75 objects, using Bromilow’s “time cost” model. After that a support 
vector machine model to the same data was applied and significant improvement of the accuracy of the prediction was obtained. 
 
Keywords construction time, construction costs, artificial neural network, linear regression, support vector machine 

---------------------------------------------------------------------***------------------------------ -------------------------------------------

1. INTRODUCTION  

Key data on the total of 75 buildings constructed in the 
Federation of Bosnia and Herzegovina have been collected 
through field studies. Chief engineers of construction 
companies have been interviewed on contractual and actually 
incurred costs and terms. The collected data contain 
information for the contracted and real time of construction, 
the contracted and real price of construction and  there are also 
data for the use of these 75 objects and for the year of 
construction . 
 
Australian Bromilow was the first who investigated the 
relation between construction price and construction time. 
From his research stems the well known “time – cost” model 
[3] Afterward the model has been confirmed in many 
countries worldwide: UK, China, Malaysia, Croatia etc. [15], 
[5],[8],[4]. 
 
In Bosnia and Herzegovina similar research was first 
conducted in 2008 [38]. The research included seven groups 
of objects and “time – cost” model was established for all 
seven groups.  
 
This paper will present the research results conducted on 75 
structures constructed in the period from 1999 to 2011, in the 
field of civil engineering and building construction, as well as 
hydro construction 

Data were collected for a total of 75 structures built in the 
Federation of Bosnia and Herzegovina in the period from 1999 
to 2011 using questionnaires and interviews with contractors. 
Key data are: 

• Object Type; 
• Construction Year; 
• Contracted And Realized Construction Time; 
• Contracted And Realized Construction Price; 
• Reasons For Non-Compliance Of Deadline. 

 
From a total of 75 structures, disregard of the contracted 
deadline was registered at 55 of them (73%), disregard of the 
contracted price was registered at 40 structures (53%), while 
simultaneously the contracted deadline and the contracted 
price overrun were registered at 36 structures (48%). 
Maximum contracted deadline overrun was 100%, and price 
68.75% while the average contracted deadline has been 
exceeded for 11.55% and 2.77% for the price. Contracted 
deadline reduction was registered at 11structures (14.67%), 
while simultaneously the contracted deadline and the 
contracted price reduction was registered at 2 structures 
(2.67%) [39]. 
 
Total of five different reasons for non-compliance appear: 

• approvals and permits; 
• climate; 
• incomplete and inaccurate technical documentation; 
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• material delivery; 
• Terms of financing. 

 
This paper presents comparison of two predictive models for 
construction time. We shall first present linear regression 
model which has been applied to these data for predicting of 
the construction time, and after that support vector machine 
(SVM) predictive model applied to the same data. Short 
overview of linear regression and SVM predictive model will 
be presented also.  
 
2. LINEAR REGRESSION PREDICTION MODEL 

FOR CONSTRUCTION PROJECT DURATION 

Linear regression is an approach to model the relationship 
between a scalar dependant variable Y and one or more 
explanatory variables denoted x. The case of one explanatory 
variable is called simple linear regression. For more than one 
explanatory variable, it is called multiple linear regression 
[35]. 
 
In linear regression data are modeled using linear predictor 
functions and unknown model parameters are estimated from 
the data. 
 
A linear regression model fits a linear function to a set of data 
points. The form of the function is:  
 

nn xxxY ββββ ++++= ......22110  

 
Where Y is the target variable, x1, x2,,… xn, are the predictor 

variables, and nβββ ,......, 21   are coefficients that multiply 

the predictor variables. 0β  is a constant. 

 
Since linear regression is restricted to fitting linear (straight 
line/plane) functions to data, it rarely works as well on real-
world data as more general techniques such as neural 
networks which can model non-linear functions. However, 
linear regression has many practical uses and a number of 
strengths. For example, linear regression analysis can be 
applied to quantify the strength of the relationship between Y 
and the xj, to assess which xj may have no relationship with Y 
at all, and to identify which subsets of the xj contain redundant 
information about Y, also linear regression models are simple 
and require minimum memory to implement, so they work 
well on embedded controllers that have limited memory space 
[24].  
 
For the prediction of the construction time we shall use 
Bromilow’s “time cost“model given in Eq. (1). 
 

BT K C= ⋅    (1) 

 

Where: T - contracted time; C - contracted price;  
K - Model parameter that is a specific way to measure 
productivity because it shows the average time needed for the 
construction of a monetary value;  
B - Model parameters that show time dependence of costs 
change. 
 
For the requirements of linear regression model, we shall write 
this model in linear form, using logarithmic transformation 
[4], as shown in Eq. (2): 

lnT = lnK + BlnC                 (2) 
 
The linear form of the equation allows usage of the simple 
statistical procedure, i.e., a single linear regression. We shall 
determine the values of parameters K and B in this model.  
For creating the linear regression model for predicting of the 
construction time for the 75 objects, DTREG software 
package was used [25].  
 
The results of the DTREG analysis of the model are presented 
in Table 1 to Table 3 bellow. 
 
Considering Eq. (2), variable ln(real time) is used as target 
variable, and ln(real price) as predicted variable.   
 
From the Table 1 we can read the coefficients of the linear 
regression model, and they are: B= 0.550208 (which is 
multiplied with variable ln(real price), and the constant lnK= - 
2.37546 and  from here  K = e-2. 37546. 
 
The model will be:    T= e-2.37546C0.550208 

 
Part of the data are used for training of the model (training 
data, Table 2), and part of  the data are used for validation of 
the model (Table 3). 
 
We shall estimate the accuracy of the model from the statistics 
of validation data (Table 3): 
 
Most often used estimators of a model are R2 and MAPE.  In 
statistics, the coefficient of determination denoted R2 indicates 
how well data points fit a line or curve; it is a measure of 
global fit of the model. In linear regression R2 equals the 
square of Pearson correlation coefficient between observed 
and modeled (predicted) data values of the dependant variable. 
R2 is an element of [0,1] and is often interpreted as the 
proportion of the response variation “explained” by the 
regressors in the model. So, the value R2= 0.73341 from our 
model may be interpreted: around 73% of the variation in  the 
response can be explained by the explanatory variables. The 
remaining 27% can be attributed to unknown, lurking 
variables or inherent variability [36]. 
 
MAPE (mean absolute percentage error) is a measure of 
accuracy of a method for constructing fitted times series 
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values in statistics. It usually expresses accuracy as a 
percentage [37]. For this model MAPE= 10.355481, which 

means that the error of the model  is around 10%. 
 

 
Table – 1: Linear regression model for predicting real time of construction  

which depends on real price of construction    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

============  Summary of Variables  ============ 
Number           Variable              Class       Type      Missing rows  Categories 
------  ---------------------------  ---------  -----------  ------------  ---------- 
    1   Number of project               Unused     Continuous           0  
   2   use  of the object                  Unused     Categorical            0      
    3   year of construction             Unused     Continuous           0      
    4   contracted time (days)         Unused     Continuous           0      
    5   real time of constr. (days)    Unused     Continuous           0      
    6   difference (days)                  Unused     Continuous           0      
    7   price contracted [KM]         Unused     Continuous            0      
    8   real price                              Unused     Continuous            0      
    9   difference of prices              Unused     Continuous            0      
   10   ln(real time)                         Target     Continuous             0      
   11   ln(real price)                        Predictor  Continuous             0          75 
 
============  Linear Regression Parameters  ============ 
 
  --------------  Computed Coefficient (Beta) Values  -------------- 
 
   Variable      Coefficient    Std. Error       t       Prob(t)     95% Confidence Interval 
--------------  -------------  ------------  ---------  ---------  ------------  ------------ 
ln(real price)       0.550208        0.0509      10.82  < 0.00001        0.4484         0.652 
Constant              -2.37546         0.6581      -3.61      0.00064        -3.693        -1.058 
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Table-2: Statistics for training data for the linear regression 
model 

 

Table-3: Statistics for validation data used for estimation of 
the accuracy of the model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
3. PREDICTING WITH SUPPORT VECTOR 

MACHINES (SVM) MODEL 

3.1. Support Vector Machines 

In recent years, machine learning has become a focal point in 
artificial intelligence. Support vector machines are a relatively 
new, rapidly developing field of research - general formulation 
for learning machines. SVMs perform exceptionally well on 
pattern classification, function approximation, and regression 
problems. 
 
SVM is a class of learning algorithms which has been proved 
in recent years to be superior to the conventional Neural 
Network method for both classification and regression tasks.  
 
Support vector machine (SVM) has been first introduced by 
Vapnik. There are two main categories for support vector 
machines: support vector classification (SVC) and support 
vector regression (SVR). SVM is a learning system using a 
high dimensional feature space. It yields prediction functions 
that are expanded on a subset of support vectors. A version of 
a SVM for regression has been proposed in 1997 by Vapnik, 
Steven Golowich, and Alex Smola [33]. This method is called 
support vector regression (SVR).  
 
The SV algorithm is a nonlinear generalization of the 
Generalized Portrait algorithm developed in Russia in the 
sixties [28], [29]. As such, it is firmly grounded in the 

framework of statistical learning theory, or VC theory, which 
has been developed over the last three decades by Vapnik and 
Chervonenkis [30], Vapnik [31],[32]. In a nutshell, VC theory 
characterizes properties of learning machines which enable 
them to generalize well to unseen data.  
 
In its present form, the SV machine was largely developed at 
AT&T Bell Laboratories by Vapnik and co-workers [2], [11], 
[9],[20], [21], [33]. Due to this industrial context, SV research 
has up to date had a sound orientation towards real-world 
applications.  
 
In regression and time series prediction applications, excellent 
performances were obtained [18], [10],[27],[17]. A snapshot 
of the state of the art in SV learning was recently taken at the 
annual Neural Information Processing Systems conference 
[22]. SV learning has now evolved into an active area of 
research. Moreover, it is in the process of entering the 
standard methods toolbox of machine learning [12],[7], [14]. 
[23] by Sch¨olkopf and Smola contains a more in-depth 
overview of SVM regression.  
 
SVM’s are new training method which is developed in the 
frame of structural risk minimization (SRM). SVM belongs to 
the group of supervised learning methods. They also belong to 
the group of nonparametric models, i.e. models for which 
parameters are not defined in advance, but their number 
depends on data for training, so that the ability of the model to 
interpolate data depends on the complexity of data. 

---  Training Data  --- 
 
Mean target value for input data = 4.7038902 
Mean target value for predicted values = 4.7038902 
 
Variance in input data = 0.8306976 
Residual (unexplained) variance after model fit = 
0.2753121 
Proportion of variance explained by model (R^2) = 
0.66858  (66.858%) 
 
Coefficient of variation (CV) = 0.111546 
Normalized mean square error (NMSE) = 0.331423 
Correlation between actual and predicted = 0.817666 
 
Maximum error = 1.7033044 
RMSE (Root Mean Squared Error) = 0.5247019 
MSE (Mean Squared Error) = 0.2753121 
MAE (Mean Absolute Error) = 0.4108599 
MAPE (Mean Absolute Percentage Error) = 9.2084657   

Validation Data  --- 
 
Mean target value for input data = 4.6575062 
Mean target value for predicted values = 4.6797136 
Variance in input data = 1.0179999 
Residual (unexplained) variance after model fit = 
0.2713927 
Proportion of variance explained by model (R^2) = 
0.73341  (73.341%) 
 
Coefficient of variation (CV) = 0.111852 
Normalized mean square error (NMSE) = 0.266594 
Correlation between actual and predicted = 0.858757 
 
Maximum error = 0.8396821 
RMSE (Root Mean Squared Error) = 0.5209536 
MSE (Mean Squared Error) = 0.2713927 
MAE (Mean Absolute Error) = 0.462848 
MAPE (Mean Absolute Percentage Error) = 10.355481 
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Figure 1 shows general model of SVM  which is identical to 
the general model of multilayer preceptron neural network 
(MLP NN). The difference is in the way of training. 
Connections in the output layer are the weights wi   and their 
meaning is identical as at NN after the training [16].  
 
For all feed-forward NNs  there is an ability of using support 
vector learning (SVL) algorithms in the process of learning. 
So, while the back-propagation algorithm is for training 
multilayer perceptron, SVL algorithm has  more generic 
nature, and because of that has broad applicability [13]. Data 
for training consist of two sets of variables: 1) input 
(predictor) variables xi, which are being chosen  arbitrary from 
the input set X,  and  2) response from the system yi (target 
variable)  which belongs to the output set of data Y. In the 
parlance of SVM literature, a predictor variable is called an 
attribute, and a transformed attribute that is used to define the 
hyperplane is called a feature.  
 
The task of choosing the most suitable representation is known 
as feature selection. A set of features that describes one case 
(i.e., a row of predictor values) is called a vector.  
SVM belongs to kernel methods, i.e. methods with which non-
linear learning problem is transformed in linear using kernel 

functions. This is accomplished by mapping of the input space 
into output multidimensional space. The solving of the 
problem, whether it is a problem of classification or 
regression, will be accomplished in the new multidimensio-nal 
space. 
 
Figure 2 shows the problem of classification of data which in 
input space is nonlinear problem. By mapping in the new 
multidimensional space, the ability of linear separation is 
given. 
 
An SVM analysis finds the line (or, in general, hyperplane) 
that is oriented so that the margin between the support vectors 
is maximized. In the figure bellow (Fig.3), the line in the right 
panel is superior to the line in the left panel.  
 
If all analyses consisted of two-category target variables with 
two predictor variables, and the cluster of points could be 
divided by a straight line, solving the problem would be easy. 
Unfortunately, this is not generally the case, so SVM must 
deal with (a) more than two predictor variables, (b) separating 
the points with non-linear curves, (c) handling the cases where 
clusters cannot be completely separated, and (d) handling 
classifications with more than two categories 

 
  

 
 

Fig-1: General model of SVM (Kecman, 2001) 
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Fig-2: Mapping in multidimensional space 

 

 
Fig -3: Margins and support vectors 

 
As we add additional predictor variables (attributes), the data 
points can be represented in N-dimensional space, and a (N-1)-
dimensional hyperplane can separate them. 
 
The goal of SVM modeling is to find the optimal hyperplane 
that separates clusters of vectors in such a way that cases with 
one category of the target variable are on one side of the plane 
and cases with the other category are on the other size of the 
plane. The vectors near the hyperplane are the support vectors. 
The concept of a kernel mapping function is very powerful. It 
allows SVM models to perform separations even with very 
complex boundaries such as shown on Fig.4 [24] . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig – 4: Separation with kernel mapping 

 

3.2. Regression using SVM  

Now we shall define the basic problem of training for 
regression problems.  
 
The model of machine learning has l data for training with 
which it tries to establish (“learn”) relationship between input 
and output, expressed by some function. The set of data for 
training D is given by 
 

},....,,),{( lixRRyxD n
ii 21=∈= . 

 
This set consists of the pairs (x1, y1), (x2 , y2),…, (xl, yl),  

where inputs x are  n – dimensional vectors n
i Rx ∈ , and the 

responses of the model (outputs) Ry i ∈ has continual 

values. SVM as  approximation function uses some function 
f(x,w), where w are the subject of training �In ε − SV 
regression, the goal is to find a function f  that has at most ε 
deviation from the actually obtained targets yi for all the 
training data and at the same time as flat as possible [19]. 
 
This function presents model of non-linear regression, because 
the resulting hiperplane is non-linear function over the n- 
dimensional x- space. 
 
Estimation of the regression model with SVM  is based on 
estimation of the error of the approximation. There are several 
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types of functions of errors (error or loss function). The most 

often used is square error (y-f)2  and absolute error fy − . 

Another type of error is the so called Vapnik’s general type of 
error, i.e. linear loss function with  ε   insensitive zone, 
defined as: 
 







>−−−

≤−
=−

εε

ε
ε ),(),(

),(0
),(

wxfyifwxfy

wxfyif
wxfy  

                                                                                           (3) 
 
We can see that the error is zero if difference between  real 
value y and  obtained (predicted) value f(x,w) is smaller than 
ε . Vapnik’s function of error with ε insensitivity zone 
defines tube, as it is presented on figure 5. If the  predicted 
value is in the tube, the error is 0. For all other predicted 
values, which are out of the tube, the error is  equal to the 
difference between absolute value of difference between 
actual and  predicted value, and the radius of the tube ε . 

 

 
Fig-5:  ε - tube (Kecman, 2001) 

 
Because of easier understanding of solving the regression 
problem using SVM (i.e. SVR), the simplest way to explain it 
is to take the problem of linear regression first. The function  
f (w,x) will be linear: 
 

bxwwxf T +=),(                     (4) 

 
We shall now present procedure of solving linear regression 
using SVMs. 
 
In fact, in this case we want to find function f (x,w) given with 
(4) , such that it approximates all pairs (xi,yi) with ε   
precision. Fig. 6 shows that situation. Because the width of the 

tube is 
w
ε2

, the maximal permitted deviation of pairs (xi,yi) 

in  this tube will be obtained by minimizing w .  

 

 
Fig-6: ε - tube when the approximation function is linear 

 
The optimization problem presented above is difficult to solve 

because it depends on w , the norm of w, which involves a 

square root. Fortunately it is possible to alter the equation by 

substituting w  with  
2

2

1
w  (the factor of 1/2 being used 

for mathematical convenience) without changing the solution 
(the minimum of the original and the modified equation have 
the same w and b). This is a convex optimization problem. 
More clearly: 

minimize 
2

2

1
w  

subject to 




≤−+
≤−−

ε
ε

ii

ii

ybwx

bwxy
                          (5) 

 
Because SVM are developed in the frame of SRM (structurel 
risk minimization) which tends to minimize expected risk R,  
according to Vapnik, the term for empirical risk is defined 
first: 
 

ε

ε ∑
=

−−=
l

i
i

T
iemp bxwy

l
bwR

1

1
),(

             (6)

 

 
l is the number of data for training.  The main aim in SV 

algorithm is to minimize ε
empR   and w . We shall obtain the 
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regression linear hyperplane bxwwxf T +=),(   by 

minimizing of the real error: 
 

)),((
2

1

1

2

ε
∑

=

−+=
l

i
ii wxfyCwR

     (7)

 

 
The above convex optimization problem is feasible in cases 
where f actually exists and approximates all pairs (xi , yi ) with 
ε precision. Sometimes, some errors are allowed. Introducing 
slack variables ξi, ξi

*  (we can see them also on Fig. 5 when f is 
nonlinear) to cope with otherwise infeasible constraints of the 
optimization problem (5), the formulation becomes: 
 

εξ −−= ),( wxfy iii  

 

εξ −−= ),(* wxfy iii         (8) 

 
Now we can  write the term (7) in the following w ay: 
 

)]([ *

,, * ∑∑
==

++=
l

i
i

l

i
iw

CxR
i

11

2

2

1 ξξξξ     (9) 

 
With the following constraints: 
 

yi - w
Txi –b lii ,....,1=+≤ ξε  

 

wTxi +b -yi lii ,....,* 1=+≤ ξε
 

 

lii ,....,10 =≥ξ
 

 

lii ,....,* 10 =≥ξ
               (10)

 

 
This optimization problem can be solved using formulation of 
Lagrange [19]: 

+= wwbwL T
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                                   (11)

 

After solving the dual regression problem, the following 
parameters which defined optimal  regression hyper plane 
f(x,w)  is  obtained: optimal  weigh vector 0w : 

i

l

i
ii xw )( *

∑
=

−=
1

0 αα  

 
And optimal b0 : 

)( 0
1

0

1
wxy

l
b T

i

l

i
i∑

=

−= . 

 
The best regression hyper plane is defined by the term:   
 

z = f(x,w) = w0
Tx + b0. 

 
But, the most of the regression problems does not  have linear 
nature. Solving the problem with non-linear regression using 
SVMs is accomplished by considering the linear regression 
hyper plane in the new feature space.  
 
The basic idea of  forming  SVMs  for creating a function of 

nonlinear regression is to map the input vectors nRx ∈ from 

the input space to  vectors z  from multi dimensional future 

space F (z= Ф(х) ),  where Ф is  mapping function from nR  

to fR   and to solve the linear regression problem in the new 
feature space. The function Ф(х) is fixed and given in advance 
and is called kernel function. The input, x- space is defined by 
the input vectors xi , while the future space F  (z space) is 
defined by the components of the z vector. Applying the SVM 
formulation, this way of mapping allows obtaining linear 
regression hyper plain using training algorithm in  z- space. It 
is expected that using this approach will lead to solving the 
problem of quadratic optimization with limitations given by 
inequalities in z – space. 
 
Many kernel mapping functions can be used – probably an 
infinite number. But a few kernel functions have been found to 
work well for a wide variety of applications, for example: 
linear function, polynomial function, radial basis function and 
sigmoid function. The default and recommended kernel 
function is the radial basis function (RBF). 
 
There are few parameters which can be used for training 
during the modeling of SVM for solving regression problems. 
The most significant are insensitivity zone ε  and penalty 
parameter C.  The both parameters are chosen by the user. 
 
3.3. Predicting Real Time of Construction with SVM 

Model 

In this paper, for prediction of the real time of construction 
time using SVM model is used the software package DTREG 
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[25]. DTREG offers several types of SVM models, for 
classification and for regression tasks. 
 
DTREG provides four kernel functions, linear, polynomial, 
radial basis function (RBF) and sigmoid (S-shaped). There is 
no way in advance to know which kernel function will be best 
for an application, but the RBF function (Ф( xi ,xj) =  

= exp ( - gamma*
2

ji x - x )    has been found to do best job 

in the majority of cases. RBF is the default and recommended 
kernel function. The RBF kernel non-linearly maps samples 
into a higher dimensional space, so it can handle nonlinear 
relationships between target categories and predictor 
attributes; a linear basis function cannot do this. Furthermore, 
the linear kernel is a special case of the RBF.  
 
There is a tolerance factor that controls when DTREG stops 
the iterative optimization process. The default value usually 
works well, but the tolerance can be reduced to generate a 
more accurate model or increase the value to reduce the 
computation time. This parameter is called the Epsilon value 
in some implementations of SVM. 
 
DTREG can generate SVM model giving also a report on the 
relative significance of predictor variables. 
 
For validating a SVM model in this paper, DTREG uses V-
fold cross validation method. This means that V SVM models 
will be constructed with (V-1)/V proportion of the rows being 
used in each model. The remaining rows are then used to 
measure the accuracy of the model. The final model is built 

using all data rows. This method has the advantage of using all 
data rows in the final model, but the validation is performed in 
separately constructed models. 
 
The accuracy of an SVM model is largely dependent on the 
selection of the model parameters such as C, Gamma, etc. 
DTREG provides two methods for finding optimal parameter 
values.  
 
When DTREG uses SVM for regression problems, criterion 
for minimizing total error is used to find optimal parameters 
for determining optimal function value.  
 
The SVM implementation used by DTREG is partially based 
on the outstanding LIBSVM project by Chih-Chung Chang 
and Chih-Jen Lin [6]. They have made both theoretical and 
practical contributions to the development of support vector 
machines. 
 
The results of the implementation of SVM model using 
package DTREG  for predicting the real time of construction 
is given bellow on Table 4 to Table 6. For the accuracy of the 
model it is very important how we choose the target and 
predictor variables. Considering the Eq. (2), for this model, as 
target variable is chosen ln(real time) and for predicted 
variables are chosen: ln(contracted time), ln(real price) and  
ln(contracted price). 
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Table-4: SVM model for predicting real time of construction 

Target variable: ln(treal time) 
Number of predictor variables: 3 
Type of model: Support Vector Machine (SVM) 
Type of SVM model: Epsilon-SVR 
SVM kernel function: Radial Basis Function (RBF) 
Type of analysis: Regression 
Validation method: Cross validation 
Number of cross-validation folds: 10 
 
  ============  Input Data  ============ 
Number of variables (data columns): 13 
Data subsetting: Use all data rows 
Number of data rows: 75 
Total weight for all rows: 75 
Rows with missing target or weight values: 0 
Rows with missing predictor values: 0 
 
  ---  Statistics for target variable: ln(treal time)  --- 
Mean value = 4.6946134 
Standard deviation = 0.9319347 
Minimum value = 2.7080502 
Maximum value = 6.4922398 
 
  ============  Summary of Variables  ============ 
Number           Variable              Class       Type      Missing rows  Categories 
------  ---------------------------  ---------  -----------  ------------  ---------- 
    1   Number of project              Unused      Continuous          0      
    2   use  of the object                 Unused      Categorical          0      
    3   year of construction           Unused      Continuous           0      
    4   contracted time (days)       Unused      Continuous           0      
    5   real time of constr. (days)  Unused      Continuous          0      
    6   difference (days)                 Unused      Continuous           0      
    7   price contracted [KM]       Unused      Continuous           0      
    8   real price                             Unused      Continuous           0      
    9   difference of prices             Unused      Continuous           0      
   10   ln(treal time)                      Target       Continuous            0      
   11   ln(real price)                      Predictor   Continuous            0             75 
   12   ln(contracted time)            Predictor   Continuous           0              31 
   13   ln(contracted price)           Predictor   Continuous            0             75 
 
  ============  SVM Parameters  ============ 
 
Type of SVM model: Epsilon-SVR 
SVM kernel function: Radial Basis Function (RBF) 
 
SVM grid and pattern searches found optimal values for parameters: 
  Search criterion: Minimize total error 
  Number of points evaluated during search = 1100 
  Minimum error found by search = 0.021429 
 
Parameter values: 
  Epsilon = 0.001 
  C = 127825.267 
  Gamma = 0.00806235 
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  P = 0.04609048 
 
Number of support vectors used by the model = 50 
 
Table -5: Statistics for training data of the model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table -6: Statistics for validation data of the model 
 

 
---  Validation Data  --- 
 
Mean target value for input data = 4.6946134 
Mean target value for predicted values = 4.6650366 
 
Variance in input data = 0.8685023 
Residual (unexplained) variance after model fit = 
0.0225357 
Proportion of variance explained by model (R^2) = 
0.97405  (97.405%) 
 
Coefficient of variation (CV) = 0.031977 
Normalized mean square error (NMSE) = 0.025948 
Correlation between actual and predicted = 0.987501 
 
Maximum error = 0.6219012 
RMSE (Root Mean Squared Error) = 0.1501191 
MSE (Mean Squared Error) = 0.0225357 
MAE (Mean Absolute Error) = 0.0993009 
MAPE (Mean Absolute Percentage Error) = 2.1722942 

---  Training Data  --- 
 
Mean target value for input data = 4.6946134 
Mean target value for predicted values = 4.6646417 
 
Variance in input data = 0.8685023 
Residual (unexplained) variance after model fit = 0.0205836 
Proportion of variance explained by model (R^2) = 0.97630  
(97.630%) 
 
Coefficient of variation (CV) = 0.030560 
Normalized mean square error (NMSE) = 0.023700 
Correlation between actual and predicted = 0.988682 
 
Maximum error = 0.6236644 
RMSE (Root Mean Squared Error) = 0.1434697 
MSE (Mean Squared Error) = 0.0205836 
MAE (Mean Absolute Error) = 0.0923678 
MAPE (Mean Absolute Percentage Error) = 2.0150009 
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As we can see from the statistic for the validation data which 
are used for estimation of the accuracy of the model, R2= 
0.97405  (97.405%), and MAPE = 2.1722942, which is a 
significant improvement over the linear model. 
 
CONCLUSIONS 

Prediction of construction time using SVM (Support Vector 
Machine) model is presented in this paper. The analysis 
covered 75 objects structured in the period of 1999 to 2011 in 
the federation of Bosnia and Herzegovina. First, conventional 
linear regression model  has been applied to the data using the 
well known “time cost” model, and after that, the predictive 
model with SVM was build and applied to the same data. The 
results show that the predicting with SVM was significantly 
more accurate. 
 
A Support Vector Machine is a relatively new modeling 
method that has shown great promise at generating accurate 
models for a variety of problems.   
 
The authors hope that the presented model encourages serious 
discussions about the topic presented here and that they will 
prove as useful for improving planning in the construction 
industry in general.  
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