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  Abstract 

Let � be a minimum dominating set of a square graph ��. If  �(��) − � contains another dominating set �	 of ��, then �	 is 

called an inverse dominating set with respect to �. The minimum cardinality of vertices in such a set is called an inverse 

domination number of  �� and is denoted by  ��(��). In this paper, many bounds on  ��(��) were obtained in terms of 

elements of �. Also its relationship with other domination parameters was obtained. 
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1. INTRODUCTION  

In this paper, we follow the notations of [1]. We consider 

only finite undirected graphs without loops or multiple edges. 

In general, we use < � > to denote the subgraph induced by 

the set of vertices � and  �(�) and  �[�] denote the open and 

closed neighborhoods of a vertex �. 

 

The minimum (maximum) degree among the vertices of � is 

denoted by �(�)�∆(�)�. A vertex of degree one is called an 

end vertex. The term ��(�)(�(�)) denotes the minimum 

number of vertices(edges) cover of �. Further, ��(�)(�(�)) 

represents the vertex(edge) independence number of �. 

 

A vertex with degree one is called an end vertex. The 

distance between two vertices � and � is the length of the 

shortest uv-path in �. The maximum distance between any 

two vertices in � is called the diameter of � and is denoted 

by  !"#(�). 

 

The square of a graph � denoted by ��, has the same vertices 

as in � and the two vertices � and � are joined in �� if and 

only if they are joined in � by a path of length one or two. 

The concept of squares of graphs was introduced in [2]. 

 

A set $ ⊆ �(�) is said to be a dominating set of �, if every 

vertex in (� − $) is adjacent to some vertex in $. The 

minimum cardinality of vertices in such a set is called the 

domination number of � and is denoted by �(�). Further, if 

the subgraph < $ > is independent, then $ is called an 

independent dominating set of �. The independent omination 

number of �, denoted by �&(�) is the minimum cardinality of 

an independent dominating set of �. 

 

A dominating set $ of � is said to be a connected dominating 

set, if the subgraph < $ >  is connected in �. The minimum 

cardinality of vertices in such a set is called the connected 

domination number of � and is denoted by �'(�). 

 

A dominating set $ is called total dominating set, if for every 

vertex � ∈ �, there exists a vertex � ∈ $,   � ∉ � such that 

� is adjacent to �. The total domination number of �, 

denoted by �*(�) is the minimum cardinality of total 

dominating set of �. 

 

Further, a dominating set $ is called an end dominating set of 

�, if $ contains all the end vertices in �. The minimum 

cardinality of vertices in such a set is called the end 

domination number of � and is denoted by �+(�). 
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Domination related parameters are now well studied in graph 

theory (see [3] and [9]). 

 

Let $ be a minimum dominating set of �, if the compliment 

� − $ of $ contains a dominating set $ ′, then $ ′ is called an 

inverse dominating set of � with respect to $. The minimum 

cardinality of vertices in such a set is called an inverse 

domination number of � and is denoted by ��(�). Inverse 

domination was introduced by V. R. Kulli and S. C. 

Sigarkanti [10]. 

 

A set � ⊆ �(��) is said to be a dominating set of ��, if 

every vertex not in � is adjacent to a vertex in �. The 

minimum cardinality of vertices in such a set is called the 

domination number of �� and is denoted by �(��)(see [4]). 

 

A set � of  �� is said to be connected dominating set of  �� if 
every vertex not in � is adjacent to at least one vertex in � 

and the set induced by � is connected. The minimum 

cardinality of a connected dominating set of  �� is called 

connected domination number of  ��(see [5]). 

 

A dominating set � of �� is said to be total dominating set, if 

for every vertex � ∈ �(��), there exists a vertex � ∈ �, � ≠
�, such that � is adjacent to �. The total domination number 

of �� denoted by �*(��) is the minimum cardinality of a 

total dominating set of ��(see [6]). 

 

A dominating set � of �� is said to be restrained dominating 

set, if for every vertex not in � is adjacent to a vertex in � 

and to a vertex in (� − �). The restrained domination 

number of ��, denoted by �-+(��) is the minimum 

cardinality of a restrained dominating set of ��. Further, a 

dominating set � of �� is said to be double dominating set, if 

for every vertex � ∈ �(��) is dominated by at least two 

vertices of �. The double domination number of ��, denoted 

by �.(��) is the minimum cardinality of a double 

dominating set of ��(see [7] and [8]). 

 

Analogously, let � be a minimum dominating set of a square 

graph ��. If �(��) − � contains another dominating 

set �′ of ��, then �′ is called an inverse dominating set with 

respect to �. The minimum cardinality of vertices in such a 

set is called an inverse domination number of �� and is 

denoted by  ��(��). In this paper, many bounds on ��(��) 

were obtained in terms of elements of �. Also its relationship 

with other domination parameters was obtained. 

 

2. RESULTS 

Theorem 2.1: For any connected graph �,  ��(��) +
�*(��) ≤ �(�) + �*(�). 

 

Proof: Let $ = {�, ��, … , �4} ⊆ �(�) be the minimum set 

of vertices which covers all the vertices in G. Suppose the 

subgraph < $ > has no isolated vertices, then $ itself is a �* -

set of �. Otherwise, let 6 = {�, ��, … , �7} ⊆ $ be the set of 

vertices with deg(�&) = �, 1 ≤ ! ≤ <. Now make deg (�&) =
1 by adding vertices {�&} ⊆ �(�) − $ and � (�&) ∈ {�&}. 
Clearly, $ = $ ∪ 6 ∪ {�&} forms a minimal total dominating 

set of �. Since �(�) = �(��), let �* = {�, ��, … , �>} ⊆  $ 

be the minimal �*-set of ��. Suppose  � ⊆ $ is a minimal 

dominating set of ��. Then there exists a vertex set �	 =
{�, ��, … , �>} ⊆ �(��) − � which covers all the vertices 

in ��. Clearly, �	 forms a minimal inverse dominating set 

��. Since for any graph �, there exists atleast one vertex 

� ∈ �(�), such that deg(�) = �(�), it follows that, |�	| ∪
|�*| ≤ |$| + deg (�). Therefore,  ��(��) + �*(��) ≤
�*(�) + �(�). 
 

Theorem 2.2: Let  � and  �	 be, �-set and  ��-set of �� 

respectively. If  �(��) = ��(��), then each vertex in � is 

of maximum degree. 

 

Proof: For @ = 2, the result is obvious. Let @ ≥ 3. Since, 

�(�) = �(��) such that �� doesnot contain any end vertex, 

let � = {�, ��, … , �7} be a dominating set of ��. If there 

exists a vertex � ∈ � such that � is adjacent to some vertices 

in �(��) − �. Then every vertex D ∈ � − {�} is an end 

vertex in < � >. Further, if D is adjacent to a vertex 
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� ∈ �(��) − �. Then �	 = � − {�, D} ∪ {�} is a dominating 

set of ��, a contradiction. Hence each vertex in � is of 

maximum degree in ��. 

 

Theorem 2.3: For any connected graph �,   ��(��) = 1 if 

and only if �� has at least two vertices of degree (@ − 1). 

 

Proof: To prove this result, we consider the following two 

cases. 

 

Case 1. Suppose �� has exactly one vertex � of deg(�) =
 @ − 1.  Then in this case � = {�}  is a �-set of ��. Clearly, 

� − � = � − {�}. Further, if � = {�}E�(�) in �(��) − �, 

deg(�) ≤ @ − 2 in ��. Then there exists at least one vertex 

D ∉ �(�) in �� such that �	 = � ∪ {D} forms an inverse 

dominating set of ��, a contradiction. 

 

Case 2. Suppose �� has at least two vertices � and � of 

deg(�) =  @ − 1 = deg (�) such that � and � are not 

adjacent. Then � = {�} dominates �� since deg(�) = @ −
1 and �(��) − � = �(��) − {�} . Further, since � and � are 

not adjacent,  �	 = {�} ∪ �	 where �	 ⊆ �(��) − �  forms a 

��-set of ��, a contradiction. 

Conversely, suppose deg(�) =  @ − 1 = deg(�), such that � 

and � are adjacent to all the vertices in ��. �	 = {�}E�(�), 
where {�} ⊆ �(��) − � and vice-versa. In any case, we 

obtain |�	| = 1. Therefore  ��(��) = 1. 
 

Proposition 2.1:  ���FG
�� =  ���HG

�� =  ���F,G
� � =

 ���FGI, GJ
� � = 1. 

 

Theorem 2.4: For any connected (@, K)-graph � without 

isolates, then �(��) +  ��(��) ≤ @.  
 

Proof : Suppose � = {�, ��, … , �7} ⊆ �(��) be the �-set of 

��, the �	 = {�, ��, … , �7} ⊆ �(��) − � forms a minimal 

inverse dominating set of ��. Since |�| ≤ L@/4O and 

|�	| ≤ L@/3O, it follows that, |�| ∪ |�	| ≤ @. Therefore, 

�(��) + ��(��) ≤ @. 

Suppose � − � is not independent, then there exists at least 

one vertex � ∈ �	such that �(�) ⊆ � − �. Clearly, |�	| =
|{� − �} − {�}| and hence, |�| ∪ |�′| ≤ @, a contradiction. 

Conversely, if � − � is independent. Then in this case, 

|�	| = |� − �| in ��.  Clearly, it follows that |�| ∪ |�	| = @. 
Hence, �(��) + ��(��) = @. 
 

Theorem 2.5: For any connected (@, K) -graph � with @ ≥ 3 

vertices,   ��(��) + �&(�) ≤ @ − 1.  
 

Proof: For @ ≤ 2,  ��(��) + �&(�) ≰ @ − 1. Consider 

@ ≥ 3, let R = {�, ��, … , �4} be the minimum set of vertices 

such that for every two vertices �, � ∈ R, �(�) ∩ �(�) ∈
�(�) − R. Suppose there exists a vertex 

$ = {�, ��, … , �>} ⊆ R which covers all the vertices in � 

and if the subgraph < $ > is totally disconnected. Then S 

forms the minimal independent dominating set of �. Now in 

��, since �(�) = �(��) and distance between two vertices 

is at most two in ��, there exists a vertex set � =
T�, ��, … , �UV ⊆ $, which forms minimal �-set of ��. Then 

the complementary set �(��) − � contains another set 

�	 such that �(�	) =  �(��). Clearly, �	 forms an inverse 

dominating set of �� and it follows that  |�	| ∪ |$| ≤ @ − 1. 
Therefore,  ��(��) + �&(�) ≤ @ − 1.  
 

Theorem 2.6: If every non end vertex of a tree is adjacent to 

at least one end vertex, then ,   ��(W�) ≤ XG�4
� Y + 1.  

 

Proof: Let  R = {�, ��, … , �4} be the set of all end vertices 

in W such that vertex |R| = #  and R ∈ �(R).  Suppose, 

vertex � ⊆ R is a �-set of ��. Then �	 ⊆ �(��) − � −
R forms a minimal inverse dominating set of ��. Since every 

tree W contains at least one non end vertex, it follows that 

|�	| ≤ XG�4
� Y + 1. Therefore, ��(W�) ≤ XG�4

� Y + 1. 
 

Theorem 2.7: For any connected (@, K)-graph �,  ��(��) +
�'(�) ≤ @ + �(�).  
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Proof: For Z ≤ 5, the result follows immediately. Let Z ≥ 6, 

suppose � = {�, ��, … , �7} , deg(�&) ≥ 2, 1 ≤ ! ≤ < be a 

minimal dominating set of �. Now we construct a connected 

dominating set �' from � by adding in every step at most 

two components of � forms a connected component in �. 

Thus we get a connected dominating set �' after at most 

� − 1 steps. Now in ��, �(�) = �(��). Suppose � ⊆ � be 

minimal �-set of ��. Then there exists a vertex set �	 =
{�, ��, … , �>} ⊆ �(��) − �, such that    !]^(�, �) ≥ 2, for 

all �, � ∈ �	  , which covers all the vertices in ��. Clearly, �	 

forms a minimal inverse dominating set of ��. Hence it 

follows that |�	| ∪ |�'| ≤ @ ∪ |�|. Therefore,  ��(��) +
�'(�) ≤ @ + �(�). 
 

 Theorem 2.8: For any connected (@, K) -graph �, 

 ��(��) + �'(��) ≤ �(��) + ��(�). Equality holds for  

 FG. 

 

Proof: Let 6 = {�, ��, … , �>} be the maximum set of 

vertices such that < 6 > is totally disconnected and |6| =
�0�. Now in �2, let �=�1,�2,…,�<⊆��2 be the minimum 

set of vertices such that �(�) = �(��). Clearly, � forms a 

minimal �-set of ��. Suppose the subgraph < � >  is 

connected, then � itself is a connected dominating set of ��. 

Otherwise, construct the connected dominating set �' from � 

by adding at most two vertices �, � ∉ � between the vertices 

of � such that �(�') = � (��) and < �' > is connected. 

Further, there exists a vertex set �	 = {�, ��, … , �7} ⊆
�(��) − � which covers all the vertices in ��. Clearly, �	 

forms an inverse dominating set of �� with respect to �-set of 

��. Since  !"#(�, �) ≥ 2, ∀�, � ∈ �(��), it follows that 

|�	| ∪ |�'| ≤ |�| ∪ |6|. Therefore,  ��(��) + �'(��) ≤
�(��) + ��(�). 
Suppose � ≅ FG. Then in this case, |6| = |�| = |�'| =
 |�	| = 1. Therefore,   ��(��) + �'(��) = �(��) + ��(�). 
 

Theorem 2.9: For any connected (@, K)-graph �,  ��(��) ≤

XG�bc(d)
� Y + 3.  

 

Proof: Let R = {�, ��, … , �7} be the set of all end vertices in 

� and let � ∉ �[R] in �. Suppose e ⊆ � is a dominating 

set of the subgraph < � >. Then R ∪ e forms a minimal end 

dominating set of �. In �� , �(�) = �(�� ) . Suppose 

diam(�) ≤ 3, then �	 = {�, �} is a minimal  ��-set of ��  

with respect to  �-set � of ��, and the result follows 

immediately. Suppose diam(�) ≥ 4,  then �	 =
{�, ��, … , �>} ⊆ �(��) − � − R is a minimal inverse 

dominating set of �� with respect to the dominating set � of 

��. Clearly, it follows that |�	| ≤ XG�{i∪j}
� Y + 3. Therefore, 

 ��(��) ≤ XG�bc(d)
� Y + 3.  

 

Theorem 2.10: For any connected (@, K)-graph �, 

 ��(��)+�-+(��) ≤ @ − ��(�) + 1. Equality holds for 

FG , Zk. 

 

Proof: Let l = {�, ��, … , �&} be the minimal set of vertices 

which covers all the edges in � such that |l| = ��(�). Now 

in ��,obtain e, the induced subgraph of ��, i.e.,e = < �� >
  such that e contains at least one end vertex � ∈ e.  Let R =
{�, ��, … , �>} be the set of all such end vertices in ��. 

Suppose �	 = �(��) − R and m ⊆ �	, such that 

diam (�, �) ≥ 2, for all � ∈ m and  � ∈ R.   Then � = R ∪ m	,  
where m	 ⊆ m,  covers all the vertices in �� such that every 

vertex not in � is adjacent to a vertex in � and to a vertex in 

�(��) − �. Clearly, � forms a minimal restrained 

dominating set of ��. Let �	 = {D, D�, … , D7} ⊆ �(��) 

forms a minimal   ��-set of �� with respect to dominating 

set of ��. Clearly, it follows that  |�	| ∪ |�| ≤ @ − |l| + 1. 

Therefore,  ��(��)+�-+(��) ≤ @ − ��(�) + 1. 
For equality, suppose � ≅ FG. Then in this case, |�| = 1 =
|�	|  and |l| = @ − 1. Therefore, |�	| ∪ |�| = @ − |l| + 1 

and hence  ��(��) + �-+(��) = @ − ��(�) + 1. 
Suppose � ≅ Zk . Then in this case, |�| = 2 = |�	|  and 

|l| = G
�.  Clearly, it follows that,  ��(��) + �-+(��) = @ −

��(�) + 1.   
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Theorem 2.11: For any connected (@, K)-graph 

�, ��(��) + �.(��) ≤ 2@ − K + 1. Equality holds for 

FG, @ ≥ 4. 

 

Proof: Let m = {�, �� , … , �7} ⊆ �(��) and let m	 ∈ �(m), 
for every vertex v∈ m in ��. Now we form the vertex set 

� ⊆ �(��) by random and independent choice of the 

vertices of m. Define �� = {m ∈ �: |�(m) ∩ �| = ∅}, p� =
{m ∉ �: |�(m) ∩ �| = ∅} and p = {m ∉ �: |�(m) ∩ �| = m}. 

Further, if { }
0

0
I X

X I
∈

′ ′= U  and   { }
0

0
I Y

Y I
∈

′ ′= U  . Then 

|��
	 |  ≤ |��|    and  |p�

	|  ≤ |p�| . Clearly, the set �. = � ∪
�0′∪p0∪ p0′∪p1 forms a � -set of �2. Let �′=�1,�2,…,�q 
be the minimal  ��-set of ��  with respect to dominating set 

� of ��. It follows that  |�	| ∪ |�.| ≤ 2@ − K + 1 and hence 

 ��(��) + �.(��) ≤ 2@ − K + 1. 
For equality, suppose � ≅ FG , with @ ≥ 4 vertices. Then in 

this case, |�.| = 2 = 2(1) = 2 |�	| and q = s(s�) 
�   for FG. 

Clearly, |�	| ∪ |�.| = 2@ − K + 1. Hence 

 ��(��)+�.(��) = 2@ − K + 1. 
 

Theorem 2.12: For any connected (@, K) − graph  �, 

 ��(��) +  !"# (�) ≤ @ + �(�) − 1.  
 

Proof: Suppose � ≅ F�, then obviously,  ��(��) +
  !"# (�) =  @ + �(�) − 1. Let �(�) contains atleast two 

vertices �  and �  such that   !]^(�, �) forms a diametral path 

in �. Clearly,  !]^(�, �) =  !"#(�). Let 

R = {�, �� , … , �>} ⊆ �(�) be the set of vertices which  are 

adjacent to all end vertices in �. Suppose w = {�, ��, … , �7} 
be the set of vertices such that  !]^(�& , �U) ≥ 2, for all 

1≤ ! ≤ q, 1 ≤ x ≤ <. Then R ∪ w	 where w	 ⊆ w forms a 

minimal �-set of �. Now in ��, 

suppose � = {�, �� , … , �4} ⊆ R ∪ w	 be the minimal  �-set 

of ��. Then the complementary set V(G�) − D contains the 

vertex set �	 ⊆ V(G�) − D, which covers all the vertices in 

��. Clearly,  �	 forms a minimal inverse dominating set of 

�� and it follows that |�	| +  !"# (�) ≤ @ + |R ∪ w	| − 1. 

Hence  ��(��) +  !"# (�) ≤ @ + �(�) − 1. 
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