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Abstract
Let D be a minimum dominating set of a square graph G2. If V(G?) — D contains another dominating set D’ of G2, then D' is

called an inverse dominating set with respect to D. The minimum cardinality of vertices in such a set is called an inverse

domination number of G2 and is denoted by y~1(G?). In this paper, many bounds on y~1(G?) were obtained in terms of

elements of ¢. Also itsrelationship with other domination parameters was obtained.
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1. INTRODUCTION

In this paper, we follow the notations of [1]. Wensider
only finite undirected graphs without loops or npl# edges.

In general, we use X > to denote the subgraph induced by
the set of vertice¥ and N (v) and N[v] denote the open and

closed neighborhoods of a vertex

The minimum (maximum) degree among the vertice§ of
denoted by (G)(A(G)). A vertex of degree one is called an
end vertex. The termx,(G)(a,(G)) denotes the minimum
number of vertices(edges) coverfFurther,8,(G)(8,(G))

represents the vertex(edge) independence numiggr of

A vertex with degree one is called an end verteRe T
distance between two verticesand v is the length of the
shortestuv-path inG. The maximum distance between any
two vertices inG is called the diameter @f and is denoted
by diam(G).

The square of a graghdenoted by:2, has the same vertices
as inG and the two vertices andv are joined inG? if and
only if they are joined irG by a path of length one or two.

The concept of squares of graphs was introducgzl.in

A setS € V(G) is said to be a dominating set ®f if every
vertex in (V —S) is adjacent to some vertex i The
minimum cardinality of vertices in such a set idlath the
domination number of and is denoted by(G). Further, if
the subgraph< S > is independent, thel§ is called an
independent dominating set 6f The independent omination
number ofG, denoted by;(G) is the minimum cardinality of

an independent dominating setthf

A dominating sef of G is said to be a connected dominating
set, if the subgrapk S > is connected iz. The minimum
cardinality of vertices in such a set is called tdomnected

domination number of and is denoted by, (G).

A dominating sef is called total dominating set, if for every
vertex v € V, there exists a verten € S, u € v such that
uis adjacent tov. The total domination number of,
denoted byy,(G) is the minimum cardinality of total

dominating set of;.

Further, a dominating sétis called an end dominating set of
G, if S contains all the end vertices . The minimum
cardinality of vertices in such a set is called tbed
ofG and

domination number is denoted byy,(G).

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org

552



IJRET: International Journal of Research in Engineering and Technology

el SSN: 2319-1163 | pl SSN: 2321-7308

Domination related parameters are now well studiegtaph
theory (see [3] and [9]).

Let S be a minimum dominating set &f, if the compliment
V — S of S contains a dominating sét, thenS'is called an
inverse dominating set @ with respect t&6. The minimum
cardinality of vertices in such a set is called iaverse
domination number of and is denoted by~1(G). Inverse
domination was introduced by V. R. Kulli and S. C.
Sigarkanti [10].

A set D c V(G?) is said to be a dominating set 6f, if
every vertex not inD is adjacent to a vertex ib. The
minimum cardinality of vertices in such a set idlezh the

domination number af? and is denoted by(G?)(see [4]).

A setD of G? is said to be connected dominating seiGdfif
every vertex not irD is adjacent to at least one vertexlin
and the set induced by is connected. The minimum
cardinality of a connected dominating set 6f is called

connected domination number 6f(see [5]).

A dominating seD of G2 is said to be total dominating set, if
for every vertexv € V(G?), there exists a vertax € D,u #

v, such thatu is adjacent tw. The total domination number
of G? denoted byy,(G?)is the minimum cardinality of a

total dominating set of?(see [6]).

A dominating seD of G2 is said to be restrained dominating
set, if for every vertex not i® is adjacent to a vertex iR
and to a vertex in(V — D). The restrained domination
number of G2, denoted byy,.(G?) is the minimum
cardinality of a restrained dominating set ®f. Further, a
dominating seD of G? is said to be double dominating set, if
for every vertexv € V(G?) is dominated by at least two
vertices ofD. The double domination number ®f, denoted
by y4(G*)is the minimum cardinality of a double

dominating set of:?(see [7] and [8]).

Analogously, leth be a minimum dominating set of a square

graph G2. If V(G?) — D contains another dominating
setD of G?, thenD' is called an inverse dominating set with
respect taD. The minimum cardinality of vertices in such a
set is called an inverse domination numberGdfand is
denoted byy~1(G?). In this paper, many bounds pn'(G?)
were obtained in terms of elementstofAlso its relationship

with other domination parameters was obtained.

2.RESULTS
Theorem 2.1: For any connected grapi, y~1(G?) +
Vt(GZ) < 6(6) +7.(G).

Proof: Let S = {v;,v,, ..., v} € V(G) be the minimum set
of vertices which covers all the vertices in G. Soge the
subgraph< S > has no isolated vertices, th&rtself is ay; -
set of G. Otherwise, leB = {v,,v,, ..., v,} € S be the set of
vertices withdeg(v;) = D,1 < i < n. Now makedeg (v;) =

1 by adding vertices{u;} € V(G) —Sand N (v;) € {u;}.
Clearly,S, = S U B U {u;} forms a minimal total dominating
set ofG. SinceV(G) = V(G?), letD, = {v;,v,, ..., } € S;

be the minimaly,-set of G2. SupposeD € S is a minimal
dominating set ofG2. Then there exists a vertex St =
{vy,v,, ..., v} €V(G?) — D which covers all the vertices
in G2. Clearly, D' forms a minimal inverse dominating set
G?. Since for any graplt, there exists atleast one vertex
v € V(G), such that de@) = §(G), it follows that, |D'| U
IDe| < 1S,] + deg (v). Y6 + 7. (6?) <
¥:(G) + 8(G).

Therefore,

Theorem 2.2: Let D and D' be,y-set andy~!-set of G2
respectively. 1fy(G%) = y~1(G?), then each vertex id is

of maximum degree.

Proof: For p = 2, the result is obvious. Let > 3. Since,
V(G) = V(G?) such that;? doesnot contain any end vertex,
let D = {vy,v,,...,v,} be a dominating set af?. If there
exists a vertex € D such that is adjacent to some vertices
in V(G?) — D. Then every vertexw € D — {v}is an end

vertex in <D >. Further, if wis adjacent to a vertex
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u € V(6G*) — D. ThenD' = D — {v,w} U {u} is a dominating
set of G2, a contradiction. Hence each vertex Inis of

maximum degree iG2.

Theorem 2.3: For any connected gragh y~(G2) =1 if

and only ifG? has at least two vertices of deg(pe- 1).

Proof: To prove this result, we consider the following two

cases.

Case 1. Supposei? has exactly one vertex of deqv) =

p — 1. Then in this cas® = {v} is ay-set ofG2. Clearly,

V — D =V — {v}. Further, ifD; = {u}eN(v) in V(G?) — D,
deg(u) < p — 2in G2. Then there exists at least one vertex
w ¢ N(u) in G?such thatD’ = D, U {w} forms an inverse

dominating set oi?, a contradiction.

Case 2. SupposeG? has at least two verticesand v of
deg(u) = p—1=deg(v) such thatu and v are not
adjacent. ThenD = {u} dominatesG? since deg(u) = p —
1andV(G?) — D = V(G?) — {u} . Further, since. andv are
not adjacent,D’ = {v} UV’ whereV’' € V(G?) — D forms a
y~1-set ofG2, a contradiction.

Conversely, supposgeg(u) = p — 1 = deg(v), such thatu
andv are adjacent to all the verticesGi. D’ = {v}eN(u),
where {v} € V(G?) — D and vice-versa. In any case, we
obtain|D’| = 1. Thereforey~1(G?) = 1.

Proposition  2.1:

y_l(KPZLPz) =1

y N KG) = v (W) = v (kD) =

Theorem 2.4: For any connectedp, q)-graph G without
isolates, the(G2?) + y~1(G?) < p.

Proof : Suppose® = {v,v,, ..., v,} € V(G?) be they-set of
G?, the D' = {v,v,,...,v,} € V(G?) — D forms a minimal
inverse dominating set ofz?. Since |D| < [p/4] and
[D'| <[p/3], it follows that, |D| U |D'| <p. Therefore,
y(G*) +y~'(G*) <p.

Suppose/ — D is not independent, then there exists at least
one vertexu € D'such thatN(u) €V — D. Clearly, |D'| =

|[{v — D} — {u}| and hencelD| U |D’| < p, a contradiction.
Conversely, ifV — D is independent. Then in this case,
D] = |V = D] in G?. Clearly, it follows thaiD| U |D'| = p.
Hencey(G?) + vy 1(G?) = p.

Theorem 2.5: For any connected(q) -graphG with p > 3
vertices, vy 1(6G*) +y;(G) <p — 1.

Proof: For p <2,y 1(G?) +y,(G) £p—1. Consider
p =3, letF = {v;,v,, ..., v, } be the minimum set of vertices
such that for every two vertices,v € F,N(u) N N(v) €
V(G) —F.

S ={v,,vy,..,v,} € F which covers all the vertices i@

Suppose there exists a vertex
and if the subgrapkc S > is totally disconnected. Then S
forms the minimal independent dominating setzofNow in
G?, sinceV(G) = V(G?) and distance between two vertices
is at most two inG?, there exists a vertex s =
{v1, v, ., v;} €S, which forms minimaly-set of G2. Then
the complementary seV(G2?)— D contains another set
D' such thatN(D") = V(G?). Clearly, D’ forms an inverse
dominating set of;? and it follows that|D’| U |S| < p — 1.

Therefore,y*(G?) +y;(G) < p — 1.

Theorem 2.6: If every non end vertex of a tree is adjacent to

at least one end vertex, thery, 1 (T?) < [?] + 1.

Proof: Let F = {v,v,, ..., v, } be the set of all end vertices
in T such that verteF| =m andF, € N(F). Suppose,
vertex D C F, is a y-set of G2. Then D' € V(G?)—D —

F forms a minimal inverse dominating set@f. Since every

tree T contains at least one non end vertex, it follohat t

D'| < [%] + 1. Thereforey ~1(T?) < [%] + 1.

Theorem 2.7: For any connectec(q)-graphG, y~1(G?) +
¥e(G) <p +vy(6).
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Proof: ForP < 5, the result follows immediately. Lét > 6,
suppose D = {vy,v,, ..., v}, deg(v;)) 22,1 <i<n be a
minimal dominating set of. Now we construct a connected
dominating setD, from D by adding in every step at most
two components oD forms a connected component Iin
Thus we get a connected dominating Bgtafter at most
D — 1 steps. Now inG2, V(G) = V(G?). Supposed; € D be
minimal y-set of G2. Then there exists a vertex set=
{vy,v,, ..., v} € V(G?) — D, such that dist(u,v) = 2, for
allu,v € D' , which covers all the vertices @#¢. Clearly,D’
forms a minimal inverse dominating set 6. Hence it
follows that |[D'| U |D.| < p U |D|. Therefore, y~1(G?) +
¥e(G) < p +y(6).

Theorem 2.8: For
Y 1(G?) +y.(G?) < y(G?) + Bo(G). Equality holds for

K,.

any connected p(q) -graph G,

Proof: Let B = {vy,v,,...,v,} be the maximum set of
vertices such tha& B > is totally disconnected anB| =
L0 Now in 62, let D=vi,v2,.,vncV2 be the minimum
set of vertices such that(D) = V(G?). Clearly, D forms a
minimal y-set of G2. Suppose the subgrapk D > is
connected, thep itself is a connected dominating setGf.
Otherwise, construct the connected dominatindsdtom D
by adding at most two verticasv ¢ D between the vertices
of D such thatN(D,) =V (G?) and < D, >is connected.
Further, there exists a vertex sBt = {u;,uy,..,u,} <
V(G?*) — D which covers all the vertices 2. Clearly, D’
forms an inverse dominating set®f with respect tg/-set of
G2. Since diam(u,v) = 2,Vu,v € V(G?), it follows that
ID'| U |D,.| < |D| U |B|. Therefore, y~1(G?) +y.(G?) <
¥(G?) + Bo(G).

Suppose G = K,,. Then in this case|B| = |D| = |D.| =
|D'| = 1. Therefore, y~1(G?) + y.(G?) = y(G?) + Bo(G).

Theorem 2.9: For any connectecb(q)-graphG, y~1(G?) <

[—”_V;’(G)] +3.

Proof: Let F = {v,, vy, ..., v,,} be the set of all end vertices in
G and letv, € N[F]in G. Supposei < V; is a dominating
set of the subgrapk V; >. ThenF U H forms a minimal end
dominating set ofG. In G2,V (G) =V(G?)

diam(G) < 3, thenD' = {u, v} is a minimal y ~*-set of G*

Suppose

with respect to y-set D of G2, and the result follows
immediately. diam(G) = 4, then D' =
{uy, uy, ., u } S V(G* —D —Fis

Suppose
a minimal inverse

dominating set of;? with respect to the dominating setof

G2. Clearly, it follows that|D’| < [@] + 3. Therefore,

y1(6?) < [FE9] +3.

Theorem 2.10: For any connected(p,q)-graph G,
7_1(62)+yre(62) < p— aO(G) + 1.
K, , Ps.

Equality holds for

Proof: Let C = {v,,v,, ..., v;} be the minimal set of vertices
which covers all the edges thsuch tha{C| = a,(G). Now
in G?,obtainH, the induced subgraph 6%, i.e. H = < G* >
such thatH contains at least one end verteg H. LetF =
{vy,v,,...,v,} be the set of all such end vertices GA.
Supposd’ = V(G?) — F and that
diam (u,v) =2, forallu e landv e F. ThenD =FuU/,

I € V', such

wherel’ € I, covers all the vertices ii? such that every
vertex not inD is adjacent to a vertex b and to a vertex in
V(G*) —D. Clearly, D

dominating set ofG2. Let D' = {wy,w,,...,w,} € V(G?)

forms a minimal restrained
forms a minimal y~1-set of G2 with respect to dominating
set of G2. Clearly, it follows that [D'| U |[D| < p —|C| + 1.
Therefore,y "1 (G?)+1,.(G?) < p — ay,(G) + 1.

For equality, supposé = K,,. Then in this casgD| =1 =
|D'| and |C| = p — 1. Therefore, |[D'|U |D|=p—|C|+ 1
and hencey “1(G?) + ¥,.(G?) = p — a,(G) + 1.

SupposeG = P; . Then in this caselD| =2 = |D'| and
IC| = g. Clearly, it follows that, y"1(G?) + ,.(G?) = p —

ay(G) + 1.
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Theorem 211: For any connected (p,q)-graph REFERENCES

G,y 1(GH) +v4(G?) <2p—q+1. Equality holds for [1].
K, p =4

2].
Proof: Let I = {v;,v,,...,v,} SV (G?) and letl’ € N(I),
for every vertex € Iin G2. Now we form the vertex set  [3].
X €V(G?*) by random and independent choice of the
vertices of I. Define X, ={I € X:INI)nX|=08}Y, =
JexX:INDnX|=0}and Y, ={ & X:IN() nX| = I}.
Further, if Xo = J{I} and Y, =[J{1? . Then

10X, 107,

[4].

X5l <1X,] and [Yy] < |Y,|. Clearly, the seth; = X U
Xo'uyYou ro'vri1forms aya-set of G2. Let D'=ulu2,.., uk [5]-
be the minimaly~1-set ofG2 with respect to dominating set

D of G2. It follows that |[D’| U |D4| < 2p — q + 1 and hence

Y G +va(GH) <2p—q+ 1

For equality, supposé = K, , with p > 4 vertices. Then in

[6].

this case|D,| =2 =2(1) = 2|D'| andq = @ for K,,.
Clearly, [D'|U |Dy| = 2p —q + 1. Hence
Y G +va(GH) =2p—q + 1. [7].

Theorem 2.12: For any connected(p,q) — graph G,
Yy 1(G?) + diam (G) < p+y(G) — 1.

[8].
Proof: Suppose G = K,, then obviously, y~1(G?) +
diam (G) = p +y(G) — 1. Let V(G) contains atleast two
verticesu andv such thatdist(u, v) forms a diametral path
in G. Clearly, dist(u,v) = diam(G). Let [91.
F, = {vy,v,,...,v} € V(G) be the set of vertices which are
adjacent to all end vertices th Supposg = {uy, uy, ..., Uy}
be the set of vertices such thdtst(v;,u;) = 2, for all [10].
1<i<k 1<j<n Then F,U]" where] c] forms a
minimal y-set of G. Now in G?,
suppose = {v,,v,,...,vn} S F; UJ' be the minimaly-set
of G2. Then the complementary séG?) — D contains the
vertex setD’ € V(G?) — D, which covers all the vertices in
G2. Clearly, D' forms a minimal inverse dominating set of
G? and it follows thaiD'| + diam (G) <p + |F, uJ'| — 1.
Hencey™1(G?) + diam (G) <p +y(G) — 1.
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