BOUNDS ON INVERSE DOMINATION IN SQUARES OF GRAPHS

M. H. Muddebihal¹, Srinivasa G²

¹ Professor, Department of Mathematics, Gulbarga University, Karnataka, India, **mhmuddebihal@yahoo.co.in** ² Assistant Professor, Department of Mathematics, B. N. M. I. T, Karnataka, India, **gsgraphtheory@yahoo.com**

Abstract

Let D be a minimum dominating set of a square graph G^2 . If $V(G^2) - D$ contains another dominating set D' of G^2 , then D' is called an inverse dominating set with respect to D. The minimum cardinality of vertices in such a set is called an inverse domination number of G^2 and is denoted by $\gamma^{-1}(G^2)$. In this paper, many bounds on $\gamma^{-1}(G^2)$ were obtained in terms of elements of G. Also its relationship with other domination parameters was obtained.

Key words: Square graph, dominating set, inverse dominating set, Inverse domination number.

Subject Classification Number: AMS-05C69, 05C70

1. INTRODUCTION

In this paper, we follow the notations of [1]. We consider only finite undirected graphs without loops or multiple edges. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices *X* and *N*(*v*) and *N*[*v*] denote the open and closed neighborhoods of a vertex *v*.

The minimum (maximum) degree among the vertices of *G* is denoted by $\delta(G)(\Delta(G))$. A vertex of degree one is called an end vertex. The term $\alpha_0(G)(\alpha_1(G))$ denotes the minimum number of vertices(edges) cover of *G*. Further, $\beta_0(G)(\beta_1(G))$ represents the vertex(edge) independence number of *G*.

A vertex with degree one is called an end vertex. The distance between two vertices u and v is the length of the shortest uv-path in G. The maximum distance between any two vertices in G is called the diameter of G and is denoted by diam(G).

The square of a graph *G* denoted by G^2 , has the same vertices as in *G* and the two vertices *u* and *v* are joined in G^2 if and only if they are joined in *G* by a path of length one or two. The concept of squares of graphs was introduced in [2]. A set $S \subseteq V(G)$ is said to be a dominating set of *G*, if every vertex in (V - S) is adjacent to some vertex in *S*. The minimum cardinality of vertices in such a set is called the domination number of *G* and is denoted by $\gamma(G)$. Further, if the subgraph $\langle S \rangle$ is independent, then *S* is called an independent dominating set of *G*. The independent omination number of *G*, denoted by $\gamma_i(G)$ is the minimum cardinality of an independent dominating set of *G*.

A dominating set *S* of *G* is said to be a connected dominating set, if the subgraph $\langle S \rangle$ is connected in *G*. The minimum cardinality of vertices in such a set is called the connected domination number of *G* and is denoted by $\gamma_c(G)$.

A dominating set *S* is called total dominating set, if for every vertex $v \in V$, there exists a vertex $u \in S$, $u \notin v$ such that *u* is adjacent to *v*. The total domination number of *G*, denoted by $\gamma_t(G)$ is the minimum cardinality of total dominating set of *G*.

Further, a dominating set S is called an end dominating set of G, if S contains all the end vertices in G. The minimum cardinality of vertices in such a set is called the end domination number of G and is denoted by $\gamma_e(G)$.

Domination related parameters are now well studied in graph theory (see [3] and [9]).

Let *S* be a minimum dominating set of *G*, if the compliment V - S of *S* contains a dominating set *S'*, then *S'* is called an inverse dominating set of *G* with respect to *S*. The minimum cardinality of vertices in such a set is called an inverse domination number of *G* and is denoted by $\gamma^{-1}(G)$. Inverse domination was introduced by V. R. Kulli and S. C. Sigarkanti [10].

A set $D \subseteq V(G^2)$ is said to be a dominating set of G^2 , if every vertex not in D is adjacent to a vertex in D. The minimum cardinality of vertices in such a set is called the domination number of G^2 and is denoted by $\gamma(G^2)$ (see [4]).

A set *D* of G^2 is said to be connected dominating set of G^2 if every vertex not in *D* is adjacent to at least one vertex in *D* and the set induced by *D* is connected. The minimum cardinality of a connected dominating set of G^2 is called connected domination number of G^2 (see [5]).

A dominating set D of G^2 is said to be total dominating set, if for every vertex $v \in V(G^2)$, there exists a vertex $u \in D, u \neq v$, such that u is adjacent to v. The total domination number of G^2 denoted by $\gamma_t(G^2)$ is the minimum cardinality of a total dominating set of G^2 (see [6]).

A dominating set D of G^2 is said to be restrained dominating set, if for every vertex not in D is adjacent to a vertex in Dand to a vertex in (V - D). The restrained domination number of G^2 , denoted by $\gamma_{re}(G^2)$ is the minimum cardinality of a restrained dominating set of G^2 . Further, a dominating set D of G^2 is said to be double dominating set, if for every vertex $v \in V(G^2)$ is dominated by at least two vertices of D. The double domination number of G^2 , denoted by $\gamma_d(G^2)$ is the minimum cardinality of a double dominating set of G^2 (see [7] and [8]). Analogously, let *D* be a minimum dominating set of a square graph G^2 . If $V(G^2) - D$ contains another dominating set *D'* of G^2 , then *D'* is called an inverse dominating set with respect to *D*. The minimum cardinality of vertices in such a set is called an inverse domination number of G^2 and is denoted by $\gamma^{-1}(G^2)$. In this paper, many bounds on $\gamma^{-1}(G^2)$ were obtained in terms of elements of *G*. Also its relationship with other domination parameters was obtained.

2. RESULTS

Theorem 2.1: For any connected graph G, $\gamma^{-1}(G^2) + \gamma_t(G^2) \le \delta(G) + \gamma_t(G)$.

Proof: Let $S = \{v_1, v_2, ..., v_m\} \subseteq V(G)$ be the minimum set of vertices which covers all the vertices in G. Suppose the subgraph $\langle S \rangle$ has no isolated vertices, then S itself is a γ_t set of G. Otherwise, let $B = \{v_1, v_2, \dots, v_n\} \subseteq S$ be the set of vertices with deg(v_i) = $D, 1 \le i \le n$. Now make deg (v_i) = 1 by adding vertices $\{u_i\} \subseteq V(G) - S$ and $N(v_i) \in \{u_i\}$. Clearly, $S_1 = S \cup B \cup \{u_i\}$ forms a minimal total dominating set of G. Since $V(G) = V(G^2)$, let $D_t = \{v_1, v_2, ..., v_k\} \subseteq S_1$ be the minimal γ_t -set of G^2 . Suppose $D \subseteq S$ is a minimal dominating set of G^2 . Then there exists a vertex set D' = $\{v_1, v_2, \dots, v_k\} \subseteq V(G^2) - D$ which covers all the vertices in G^2 . Clearly, D' forms a minimal inverse dominating set G^2 . Since for any graph G, there exists at least one vertex $v \in V(G)$, such that deg $(v) = \delta(G)$, it follows that, $|D'| \cup$ $|D_t| \leq |S_1| + \deg(v)$. Therefore, $\gamma^{-1}(G^2) + \gamma_t(G^2) \leq$ $\gamma_t(G) + \delta(G).$

Theorem 2.2: Let *D* and *D'* be, γ -set and γ^{-1} -set of G^2 respectively. If $\gamma(G^2) = \gamma^{-1}(G^2)$, then each vertex in *D* is of maximum degree.

Proof: For p = 2, the result is obvious. Let $p \ge 3$. Since, $V(G) = V(G^2)$ such that G^2 doesnot contain any end vertex, let $D = \{v_1, v_2, ..., v_n\}$ be a dominating set of G^2 . If there exists a vertex $v \in D$ such that v is adjacent to some vertices in $V(G^2) - D$. Then every vertex $w \in D - \{v\}$ is an end vertex in < D >. Further, if w is adjacent to a vertex $u \in V(G^2) - D$. Then $D' = D - \{v, w\} \cup \{u\}$ is a dominating set of G^2 , a contradiction. Hence each vertex in D is of maximum degree in G^2 .

Theorem 2.3: For any connected graph *G*, $\gamma^{-1}(G^2) = 1$ if and only if G^2 has at least two vertices of degree (p - 1).

Proof: To prove this result, we consider the following two cases.

Case 1. Suppose G^2 has exactly one vertex v of deg(v) = p - 1. Then in this case $D = \{v\}$ is a γ -set of G^2 . Clearly, $V - D = V - \{v\}$. Further, if $D_1 = \{u\} \in N(v)$ in $V(G^2) - D$, deg $(u) \le p - 2$ in G^2 . Then there exists at least one vertex $w \notin N(u)$ in G^2 such that $D' = D_1 \cup \{w\}$ forms an inverse dominating set of G^2 , a contradiction.

Case 2. Suppose G^2 has at least two vertices u and v of $\deg(u) = p - 1 = \deg(v)$ such that u and v are not adjacent. Then $D = \{u\}$ dominates G^2 since $\deg(u) = p - 1$ and $V(G^2) - D = V(G^2) - \{u\}$. Further, since u and v are not adjacent, $D' = \{v\} \cup V'$ where $V' \subseteq V(G^2) - D$ forms a γ^{-1} -set of G^2 , a contradiction.

Conversely, suppose deg(u) = p - 1 = deg(v), such that uand v are adjacent to all the vertices in G^2 . $D' = \{v\} \in N(u)$, where $\{v\} \subseteq V(G^2) - D$ and vice-versa. In any case, we obtain |D'| = 1. Therefore $\gamma^{-1}(G^2) = 1$.

Proposition 2.1: $\gamma^{-1}(K_p^2) = \gamma^{-1}(W_p^2) = \gamma^{-1}(K_{1,p}^2) = \gamma^{-1}(K_{1,p}^2) = 1.$

Theorem 2.4: For any connected (p,q)-graph *G* without isolates, then $\gamma(G^2) + \gamma^{-1}(G^2) \le p$.

Proof : Suppose $D = \{v_1, v_2, ..., v_n\} \subseteq V(G^2)$ be the γ -set of G^2 , the $D' = \{v_1, v_2, ..., v_n\} \subseteq V(G^2) - D$ forms a minimal inverse dominating set of G^2 . Since $|D| \leq [p/4]$ and $|D'| \leq [p/3]$, it follows that, $|D| \cup |D'| \leq p$. Therefore, $\gamma(G^2) + \gamma^{-1}(G^2) \leq p$.

Suppose V - D is not independent, then there exists at least one vertex $u \in D'$ such that $N(u) \subseteq V - D$. Clearly, |D'| = $|\{v - D\} - \{u\}|$ and hence, $|D| \cup |D'| \leq p$, a contradiction. Conversely, if V - D is independent. Then in this case, |D'| = |V - D| in G^2 . Clearly, it follows that $|D| \cup |D'| = p$. Hence, $\gamma(G^2) + \gamma^{-1}(G^2) = p$.

Theorem 2.5: For any connected (p,q) -graph *G* with $p \ge 3$ vertices, $\gamma^{-1}(G^2) + \gamma_i(G) \le p - 1$.

Proof: For $p \le 2$, $\gamma^{-1}(G^2) + \gamma_i(G) \le p - 1$. Consider $p \ge 3$, let $F = \{v_1, v_2, \dots, v_m\}$ be the minimum set of vertices such that for every two vertices $u, v \in F, N(u) \cap N(v) \in$ V(G) - F. Suppose there exists а vertex $S = \{v_1, v_2, \dots, v_k\} \subseteq F$ which covers all the vertices in G and if the subgraph $\langle S \rangle$ is totally disconnected. Then S forms the minimal independent dominating set of G. Now in G^2 , since $V(G) = V(G^2)$ and distance between two vertices is at most two in G^2 , there exists a vertex set D = $\{v_1, v_2, \dots, v_i\} \subseteq S$, which forms minimal γ -set of G^2 . Then the complementary set $V(G^2) - D$ contains another set D' such that $N(D') = V(G^2)$. Clearly, D' forms an inverse dominating set of G^2 and it follows that $|D'| \cup |S| \le p - 1$. Therefore, $\gamma^{-1}(G^2) + \gamma_i(G) \leq p - 1$.

Theorem 2.6: If every non end vertex of a tree is adjacent to at least one end vertex, then , $\gamma^{-1}(T^2) \leq \left[\frac{p-m}{2}\right] + 1.$

Proof: Let $F = \{v_1, v_2, ..., v_m\}$ be the set of all end vertices in *T* such that vertex |F| = m and $F_1 \in N(F)$. Suppose, vertex $D \subseteq F_1$ is a γ -set of G^2 . Then $D' \subseteq V(G^2) - D - F$ forms a minimal inverse dominating set of G^2 . Since every tree *T* contains at least one non end vertex, it follows that $|D'| \leq \left[\frac{p-m}{2}\right] + 1$. Therefore, $\gamma^{-1}(T^2) \leq \left[\frac{p-m}{2}\right] + 1$.

Theorem 2.7: For any connected (p,q)-graph G, $\gamma^{-1}(G^2) + \gamma_c(G) \le p + \gamma(G)$.

Proof: For $P \leq 5$, the result follows immediately. Let $P \geq 6$, suppose $D = \{v_1, v_2, ..., v_n\}$, deg $(v_i) \geq 2, 1 \leq i \leq n$ be a minimal dominating set of *G*. Now we construct a connected dominating set D_c from *D* by adding in every step at most two components of *D* forms a connected component in *D*. Thus we get a connected dominating set D_c after at most D - 1 steps. Now in G^2 , $V(G) = V(G^2)$. Suppose $D_1 \subseteq D$ be minimal γ -set of G^2 . Then there exists a vertex set D' = $\{v_1, v_2, ..., v_k\} \subseteq V(G^2) - D_1$, such that $dist(u, v) \geq 2$, for all $u, v \in D'$, which covers all the vertices in G^2 . Clearly, D'forms a minimal inverse dominating set of G^2 . Hence it follows that $|D'| \cup |D_c| \leq p \cup |D|$. Therefore, $\gamma^{-1}(G^2) +$ $\gamma_c(G) \leq p + \gamma(G)$.

Theorem 2.8: For any connected (p,q)-graph G, $\gamma^{-1}(G^2) + \gamma_c(G^2) \le \gamma(G^2) + \beta_0(G)$. Equality holds for K_p .

Proof: Let $B = \{v_1, v_2, ..., v_k\}$ be the maximum set of vertices such that $\langle B \rangle$ is totally disconnected and $|B| = \beta 0G$. Now in *G2*, let $D = v1, v2, ..., vm \subseteq VG2$ be the minimum set of vertices such that $N(D) = V(G^2)$. Clearly, *D* forms a minimal γ -set of G^2 . Suppose the subgraph $\langle D \rangle$ is connected, then *D* itself is a connected dominating set of G^2 . Otherwise, construct the connected dominating set D_c from *D* by adding at most two vertices $u, v \notin D$ between the vertices of *D* such that $N(D_c) = V(G^2)$ and $\langle D_c \rangle$ is connected. Further, there exists a vertex set $D' = \{u_1, u_2, ..., u_n\} \subseteq V(G^2) - D$ which covers all the vertices in G^2 . Clearly, *D'* forms an inverse dominating set of G^2 with respect to γ -set of G^2 . Since $diam(u, v) \ge 2, \forall u, v \in V(G^2)$, it follows that $|D'| \cup |D_c| \le |D| \cup |B|$. Therefore, $\gamma^{-1}(G^2) + \gamma_c(G^2) \le \gamma(G^2) + \beta_0(G)$.

Suppose $G \cong K_p$. Then in this case, $|B| = |D| = |D_c| =$ |D'| = 1. Therefore, $\gamma^{-1}(G^2) + \gamma_c(G^2) = \gamma(G^2) + \beta_0(G)$.

Theorem 2.9: For any connected (p,q)-graph G, $\gamma^{-1}(G^2) \leq \left[\frac{p-\gamma_e(G)}{2}\right] + 3.$

Proof: Let $F = \{v_1, v_2, ..., v_n\}$ be the set of all end vertices in G and let $v_1 \notin N[F]$ in G. Suppose $H \subseteq V_1$ is a dominating set of the subgraph $\langle V_1 \rangle$. Then $F \cup H$ forms a minimal end dominating set of G. In $G^2, V(G) = V(G^2)$. Suppose diam $(G) \leq 3$, then $D' = \{u, v\}$ is a minimal γ^{-1} -set of G^2 with respect to γ -set D of G^2 , and the result follows immediately. Suppose diam $(G) \geq 4$, then $D' = \{u_1, u_2, ..., u_k\} \subseteq V(G^2) - D - F$ is a minimal inverse dominating set of G^2 with respect to the dominating set D of G^2 . Clearly, it follows that $|D'| \leq \left[\frac{p - \{F \cup H\}}{2}\right] + 3$. Therefore, $\gamma^{-1}(G^2) \leq \left[\frac{p - \gamma_e(G)}{2}\right] + 3$.

Theorem 2.10: For any connected (p,q)-graph G, $\gamma^{-1}(G^2) + \gamma_{re}(G^2) \le p - \alpha_0(G) + 1$. Equality holds for K_p , P_6 .

Proof: Let $C = \{v_1, v_2, ..., v_i\}$ be the minimal set of vertices which covers all the edges in G such that $|C| = \alpha_0(G)$. Now in G^2 , obtain *H*, the induced subgraph of G^2 , i.e., $H = \langle G^2 \rangle$ such that *H* contains at least one end vertex $v \in H$. Let F = $\{v_1, v_2, ..., v_k\}$ be the set of all such end vertices in G^2 . Suppose $V' = V(G^2) - F$ and $I \subseteq V'$, such that diam $(u, v) \ge 2$, for all $u \in I$ and $v \in F$. Then $D = F \cup I'$, where $I' \subseteq I$, covers all the vertices in G^2 such that every vertex not in D is adjacent to a vertex in D and to a vertex in $V(G^2) - D$. Clearly, D forms a minimal restrained dominating set of G^2 . Let $D' = \{w_1, w_2, \dots, w_n\} \subseteq V(G^2)$ forms a minimal γ^{-1} -set of G^2 with respect to dominating set of G^2 . Clearly, it follows that $|D'| \cup |D| \le p - |C| + 1$. Therefore, $\gamma^{-1}(G^2) + \gamma_{re}(G^2) \le p - \alpha_0(G) + 1$.

For equality, suppose $G \cong K_p$. Then in this case, |D| = 1 = |D'| and |C| = p - 1. Therefore, $|D'| \cup |D| = p - |C| + 1$ and hence $\gamma^{-1}(G^2) + \gamma_{re}(G^2) = p - \alpha_0(G) + 1$.

Suppose $G \cong P_6$. Then in this case, |D| = 2 = |D'| and $|C| = \frac{p}{2}$. Clearly, it follows that, $\gamma^{-1}(G^2) + \gamma_{re}(G^2) = p - \alpha_0(G) + 1$.

Theorem 2.11: For any connected (p,q)-graph $G, \gamma^{-1}(G^2) + \gamma_d(G^2) \le 2p - q + 1$. Equality holds for $K_p, p \ge 4$.

Proof: Let $I = \{v_1, v_2, ..., v_n\} \subseteq V(G^2)$ and let $I' \in N(I)$, for every vertex $v \in I$ in G^2 . Now we form the vertex set $X \subseteq V(G^2)$ by random and independent choice of the vertices of I. Define $X_0 = \{I \in X : |N(I) \cap X| = \emptyset\}, Y_0 =$ $\{I \notin X : |N(I) \cap X| = \emptyset\}$ and $Y_1 = \{I \notin X : |N(I) \cap X| = I\}$. Further, if $X_0' = \bigcup_{I \in X_0} \{I'\}$ and $Y_0' = \bigcup_{I \in Y_0} \{I'\}$. Then $|X_0'| \leq |X_0|$ and $|Y_0'| \leq |Y_0|$. Clearly, the set $D_d = X \cup$

X0'UY0U Y0'UY1 forms a γd -set of *G2*. Let D'=u1,u2,...,ukbe the minimal γ^{-1} -set of G^2 with respect to dominating set D of G^2 . It follows that $|D'| \cup |D_d| \le 2p - q + 1$ and hence $\gamma^{-1}(G^2) + \gamma_d(G^2) \le 2p - q + 1$.

For equality, suppose $G \cong K_p$, with $p \ge 4$ vertices. Then in this case, $|D_d| = 2 = 2(1) = 2 |D'|$ and $q = \frac{p(p-1)}{2}$ for K_p . Clearly, $|D'| \cup |D_d| = 2p - q + 1$. Hence $\gamma^{-1}(G^2) + \gamma_d(G^2) = 2p - q + 1$.

Theorem 2.12: For any connected (p,q) – graph G, $\gamma^{-1}(G^2) + diam(G) \le p + \gamma(G) - 1.$

Proof: Suppose $G \cong K_2$, then obviously, $\gamma^{-1}(G^2) + \gamma^{-1}(G^2)$ diam (G) = $p + \gamma(G) - 1$. Let V(G) contains at least two vertices u and v such that dist(u, v) forms a diametral path G. Clearly, dist(u, v)in = diam(G). Let $F_1 = \{v_1, v_2, \dots, v_k\} \subseteq V(G)$ be the set of vertices which are adjacent to all end vertices in G. Suppose $J = \{u_1, u_2, ..., u_n\}$ be the set of vertices such that $dist(v_i, u_j) \ge 2$, for all $1 \le i \le k$, $1 \le j \le n$. Then $F_1 \cup J'$ where $J' \subseteq J$ forms a G. in G^2 . minimal γ -set of Now suppose $D = \{v_1, v_2, ..., v_m\} \subseteq F_1 \cup J'$ be the minimal γ -set of G^2 . Then the complementary set $V(G^2) - D$ contains the vertex set $D' \subseteq V(G^2) - D$, which covers all the vertices in G^2 . Clearly, D' forms a minimal inverse dominating set of G^2 and it follows that $|D'| + diam(G) \le p + |F_1 \cup J'| - 1$. Hence $\gamma^{-1}(G^2) + diam(G) \leq p + \gamma(G) - 1$.

REFERENCES

- F. Harary, Graph Theory, Adison-Wesley, Reading, Mass., 1972.
- [2]. F. Harary and I. C. Ross, The Square of a Tree, Bell System Tech. J. 39, 641-647, 1960.
- [3]. M. A. Henning, Distance Domination in Graphs, in: T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors. Domination in Graphs: Advanced Topics, chapter 12, Marcel Dekker, Inc., New York, 1998.
- [4]. M. H. Muddebihal, G. Srinivasa and A. R. Sedamkar, Domination in Squares of Graphs, Ultra Scientist, 23(3)A, 795–800, 2011.
- [5]. M. H. Muddebihal and G. Srinivasa, Bounds on Connected Domination in Squares of Graphs, International Journal of Science and Technology, 1(4), 170–176, April 2012.
- [6]. M. H. Muddebihal and G. Srinivasa, Bounds on Total Domination in Squares of Graphs, International Journal of Advanced Computer and Mathematical Sciences, 4(1), 67–74, 2013.
- [7]. M. H. Muddebihal and G. Srinivasa, Bounds on Restrained Domination in Squares of Graphs, International Journal of Mathematical Sciences, 33(2), 1173–1178, August 2013.
- [8]. M. H. Muddebihal and G. Srinivasa, Bounds on Double Domination in Squares of Graphs, International Journal of Research in Engineering and Technology, 2(9), 454-458, September 2013.
- [9]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [10]. V. R. Kulli and S. C. Sigarkanti, Inverse Domination in Graphs. Nat. Acad. Sci. Lett., 14, 473-475, 1991.