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Abstract
Array antenna systems are often used to enhanceetieved signal to interference and noise raticewhhe signal operates in
heavily jammed environment. Proper modeling ofrdeeived data at different antenna elements is ftapb when evaluating the
performance of this system, especially when battsitinal and interference have wide frequency bafdse antenna output is the
linear combination of data from all the antennanetmts. In conventional narrowband beam forminggetsequences at different
antenna elements are related by some fixed phafteTie phase shift is determined by the wave $atirection of arrival (DOA).

In this paper, an efficient method for the patteymthesis of the linear antenna arrays with thesprided nulling and steering lobe is
presented. The proposed method is based on Least Blguare (LMS) algorithm provide a comprehensive detailed treatment of
the signal model used for beam forming, as welldescribing adaptive algorithms to adjust the wésgbf an array. In order to

improve the convergence rate of LMS algorithm imgrantenna system, in this paper we proposesvam@malized LMS (NLMS)
algorithm, This new algorithm can be treated as lack based simplification of NLMS algorithm whicives satisfactory

performance in certain applications in comparisoithveonventional NLMS recursion, i.e., BBNLMS altjon. By taking advantage
of spatial filtering, the proposed scheme promiseseduce the bandwidth required for transmittirefal by improving convergence
rate. The performance of the BBNLMS algorithm ia phesence of Multi-path effects and multiple usei@nalyzed using MATLAB
simulations. The simulations when compared to tfidhe LMS algorithm, the results suggest that NBBS algorithm can improve
the convergence rate and lead to better systegiesfty.
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1. INTRODUCTION

The performance of a communication system in an
interference environment can be severely degradethe

carrier frequency used by the desired signal, ahd t
performance measure is to maximize the output signaoise
ratio (SNR), in such systems the desirable is dufR

received signal to interference ratio is unaccdptdbw.
Smart antenna is the critical technique of thedthimobile
communication, while the core of smart antennadapéive
algorithm research. Smart antennas can be usedhieve
different benefits. Among those the most importianhigher
network capacity [1], [2] by precise control of & null
equality and mitigation of interference combineftequency
reuse reduction distance improving capacity. Themte
adaptive antenna is used for a phased array wieewekght of
each element is applied in a dynamic fashion. Theunt of
weighting on each channel is not fixed at the tohthe array
design, but rather decided by the system at the toh
processing the signals to meet required objectives.

In other words, the array pattern adapts to thesdn and the
adaptive process is under control of the system.ekample,
consider the situation of a communication systemrajng in
the presence of a directional interference opegath the

should be maximized by cancelling the directiong&tiference
using optimal antennas. The antenna pattern incége has a
main beam pointed in the desired signal directaond has a
null in the direction of the interference. Assuntett the
interference is not stationary but moving slowlfy.optimal
performance is to be maintained, the antenna patteeds to
adjust so that the null position remains in the imgv
interference direction.

In this paper we propose a simple and novel adaptiv
algorithm for steering the antenna beam electrdgica
Generally LMS algorithm is widely used in adaptfiter due

to its relatively low computational complexity, gbatability
properties, and relatively good robustness against
implementation errors. However, the least meanreg(lavS)
algorithm has poor convergence rate, which redutbes
system performance. In order increase the conveegeate,
LMS algorithm is modified by normalization, whick known

as normalized LMS (NLMS)[8]. In our work NLMS algthhm
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to increase the convergence rate and reducing datgmal
complexity Block processing of data in adaptivetefi
significantly reduces computational burden and ups
convergence performance [9]. In literature sevesalart
antenna processing techniques were presentedIIQ]tp the
best of author's knowledge reduction of computation
complexity in the array processing is not addreskathlly in
our simulations we considered two received sigaals three
directions of arrivals (DOAs). Simulation resultenéirm that
the proposed BBNLMS based beam steering is suptréor
conventional LMS algorithm in terms of complexitynda
convergence rate. Normalization of step size in LMS
algorithm improves the convergence rate and deeseascess
mean square error, by exploiting this we have imgieted
beam forming using NLMS algorithms, i.e., NLMS aligiom
and BBNLMS algorithm.

2. ADAPTIVE BEAM FORMING

In certain applications the gain of a single antenmay not
sufficient, array antennas plays a vital role iclsgituations.

In array antennas the beam can be steered in tws,vi&,
mechanical steering and electronic steering. Aglaptieam
forming can be performed in many ways using adaptiv
algorithms. Several adaptive algorithms are presenn
literature. Most of the algorithms are concernedhwthe
maximization of the SNR. A functional diagram of an
adaptive array system is shown in fig 1
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Fig-1: Functional block diagram of an adaptive arrayesyst

Adaptive array systems can locate and track siguaksrs and
interferers) and dynamically adjust the antennaepatto
enhance reception while minimizing interferencengssignal
processing algorithms.

After the system down converts the received sigrtals
baseband and digitizes them, it locates the sighahterest
(SOI) using the DOA algorithm, and it continuousigcks the
SOl and signal not of interest (SNOI)s by dynathjc
changing the complex weights (amplitudes and phatése
antenna elements). Basically, the DOA computes the
direction-of-arrival of all the signals by compudirthe time

delays between the antenna elements, and aftervihed,
adaptive algorithm, using a cost function, computke
appropriate weights that result in an optimum réolia
pattern. Because adaptive arrays are generally rdigieal
processing intensive and require a complete RHqguodf the
transceiver behind each antenna element, theyttebd more
expensive than switched-beam systems. Adaptiveysrra
utilize  sophisticated signal-processing algorithmto
continuously distinguish between desired signalgltipath,
and interfering signals, as well as calculate ti¥DA. This
approach updates its transmit strategy continuobased on
changes in both the desired and interfering sifpreations.

In adaptive beam forming techniques, two main sgias are
distinguished. The first one is based on the astomphat
part of the desired signal is already known throtighuse of a
training sequence. This known signal is then coexbawith
what is received, and the weights are then adjusted
minimize the Mean Square Error (MSE) between thewkm
and the received signals. In this way, the beartepatan be
adjusted to null the interferers. This approachnoiges the
signal-to-interference ratio (SIR), and is applieald non-
line-of-sight (NLOS) environments. Since the weggtdre
updated according to the incoming signals, not ottig
interference is reduced but the multipath fading also
mitigated. In the second one, the directions dfals from all
sources transmitting signals to the array antenma fiast
identified. The complex weights are then adjustedroduce a
maximum toward the desired angle and null towaterfaring
signals. This strategy may turn out to be deficianpractical
scenarios where there are too many DOAs due to paths,
and the algorithms are more likely to fail in prdgeletecting
them. This is more likely to occur in NLOS enviroants
where there are many local scatters close to thesweand the
base station, thus resulting in a wider spreachefangle of
arrival. Another significant advantage of the adaptintenna
systems is the ability to share spectrum. Becaus¢he
accurate tracking and robust interference rejecatapabilities,
multiple users can share the same conventionalnehavithin
the same cell. System capacity increases througbrlmter-
cell frequency reuse patterns as well as intraftetjuency
reuse.

3. ADAPTIVE ALGORITHMS

An adaptive filter is a transversal filter trainkg an adaptive
algorithm. The algorithm updates the weights ahdtaration
by estimating the gradient of the quadratic MSHa& and
then moving the weights in the negative directidnthe
gradient by a minute amount. The constant thatrdehes
this amount is referred to as the step size (1)emhis step
size is small enough, the process leads theseatstimveights
to the optimal weights. The convergence and tramsie
behavior of these weights along with their covar@n
characterize the LMS algorithm and the way the step and
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process of gradient estimation affect these pammmetre of
great practical importance.

3.1 TheLeast Mean Square (LM S) Algorithm:

The LMS algorithm is probably the most widely usetiptive
filtering algorithm, being employed in several comitation
systems. It has gained popularity due to its lowgotational
complexity and proven robustness. It incorporatesw n
observations and iteratively minimizes linearly theean-
square error. This algorithm is based on the kndgédeof
arriving signal. The knowledge of the received sign
eliminates the need for beam forming, but the exfee can
also be a vector which is somewhat correlated wita
received signal. As shown in Figure 1, an adaptieam
former consists of multiple antennas, complex wisiglthe
function of which is to amplify or attenuate andlagethe
signals from each antenna element, and a sumnaeldt@ll of
the processed signals, in order to tune out theatsgnot of
interest, while enhancing the signal of interestnét, beam
forming is some time referred to as spatial dimdi are
filtered out, while others are amplified. The resg® of the
LMS is as follows,

w’ (n+1) =w’ (n) +uu (n) e*(n)

tnput vector /

) - ™ output signal
ansversal filter
= —
Wn)
‘ ‘ (VI
adaptive weight . (v )
control mechamsm N +

T

destred response d{n)

Fig-2: Block diagram of adaptive transversal filter

3.2 Normalized Least Mean Square (NLMS)
Algorithm:

In structural terms, the normalized LMS filter igaetly the
same as the standard LMS filter. In the standarchfof a
least mean square (LMS) filter studied in earliethe
adjustment applied to the tap-weight vector of fifter at
iteration n+1 consists of the product of three &erm

» The step-size parameter W, which is under the

designer’s control.

* The tap-input vector u(n),which is supplied by a

source of information.

e The estimation error e(n) for real-valued datajt®r
complex conjugater =(n) for complex-valued data,
which is calculated at iteration n.

The adjustment is directly proportional to the taput vector
u(n). Therefore, when u(n) is large, the LMS filtsuffers
from a gradient noise amplification problem. To @ane this
difficulty, we may use the normalized LMS filter.n |
particular, the adjustment applied to the tap-weigttor at
iteration n+1 is “normalized” with respect to thgqusred
Euclidean norm of the tap-input vector u(n) atatem n-
hence the term “normalized”. The normalized LMSefilis
manifestation of the principle of minimal disturlean which
may be stated as follows. From one iteration tortbet, the
weight vector of an adaptive filter should be clethgn a
minimal manner, subject to a constraint imposed toa
updated filter's output. The response of the NLM&ethm
is as follows,

P
w (n+1) = w (n) +8+ |Iulﬁn3||3u(n)*e(n)_

Here e(n) = d(n) ®H(n) u (n),

3.3 Block based normalized LM S algorithm
(BBLMYS):

In the conventional and normalized LMS algorithresatibed
earlier, the tap weights (free parameters) of #efiduration
impulse response (FIR) filter are adapted in theetdomain.
Recognizing that the Fourier transforms maps tioexan
signals into the frequency domain and that therse/éourier
transform provides the inverse mapping that talsesack into
the time domain, we see that it is equally feasibl@erform
the adaption of filter parameters in the frequedoynain. In
such a case, we speak of frequency —domain addjtaring
(FDAF),There are two main reasons for seeking aolaph

the frequency domain in one form or another, Self-
orthogonalizing adaptive filtering, mechanized irdifferent
way from that is used to improve the convergence
performance of the conventional LMS algorithm. Aaldo a
more uniform convergence rate is attained by ekplpithe
orthogonality properties of the discrete Fourieansform
(DFT) and related discrete transforms.
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Summary of the Block Based Normalized LMS converter, and the blocks of input data so prodacedapplied
Algorithm to an FIR filter of length M, one block at a tim€Ehe tap
Parameters: weights of the filter proceeds on a block-by-bldasis rather

M = number of taps (i.e., filter length than on a sample-by-sample basis as in the comvettLMS

f=adaption constant algorithm.

elhufmyi]om

0 <2 sremi 4. SIMULATION RESULTS

Where

E[le()F] = error signal power The performance of the LMS, NLMS, BB-NLMS algoritem

Ellu(m)IF] = input signal power are examined in terms of convergence rate, numbactoe

D(n) = mean-square deviation taps used and beam pattern. In order to replicaatistic
Initialization. If prior knowledge about the tap-gbt mobile environments, for those simulations with endhan

one multipath, each multipath experience a differgain,
which contains both amplitude and phase compondrits.
results will be accompanied by discussions of theeovations
made and in addition comparisons will be made &t tf
results achieved. The mean square error for vaatgaithms
is shown in Fig. From the figure is clear that taeor
amplitude decreases as we are moving from LMS to
. BBNLMS algorithm. By keen observation of Fig. wencsay
attime S‘?p n +1 that convergence starts for LMS approximately afféth
Computation: For n= 0’1’2 """ .compute sample, where as for NLMS algorithm it is approxiemna

&(n) =d(n) *H(n) u (n), after 30th sample, superiorly for BBNLMS convergerstarts
o approximately after 15th sample. More ever amonly al
algorithms BBNLMS has minimum error level. The mgual
of this project is to develop and study the effeofsthe
proposed algorithms for Smart Antenna systemscrifically
examine the performance of the proposed algoritkime,
/ following test cases were designed:

ittt « One White signal with one DOA

e B L Pl ) + One White Signal with 3 DOA
Ly tid ll + Two White Signals with 1 DOA each
. ., i R « Two White Signals with Three DOAs each different
vt filer || et g algorithm.

vector# (n) is available, use that knowledge to select an

appropriate value fd¥ (0). Otherwise, sét (0)=0.

Data

Given:u(n) = M-by-1 tap input vector at time n
d(n) = desired response aetitep n

To be compute® (n+1) = estimate of tap-weight vectpr

W (n+l) = W (n) + T w )

Fig-3: Block Based Normalized LMS Algorithm

Input igral )
—

el FR

W . . . .
= The selection of test cases enables us to invéstigaltipath
/ and multi-user effects in mobile communication sgst The

first simulation investigated was the receptionook signal

with one path, which arrives at the base statiomrajle of

R - fded 6_00. A ga_in with amplitude of 0.5 was introducedr__te input

signal as it was propagated to the antenna. Thelaiion was

i : e | o Ty e conducted for the following threshold contre),values of 0.1,

: - 0.5 and 1.0.This section we consider three caskeser are

L peoming d ! Beam forming using LMS algorithm: one white signeith

blazk b one DOA The convergence characteristics of theetteam

t forming algorithms are shown in figure 5.1. Frore figure it

(orelton is clear that NLMS convergence faster than LMS. Whase

andvegh BBNLMS convergence faster than NLMS. Normalized
algorithms convergences faster than conventional SLM

ndite algorithm because of the normalization term in the

experiences large value in the denominator

Fig-4: Block-based adaptive filter

In a block adaptive filter, the incoming data sewpesu(n) is
sectioned into L-point blocks by means of a sdoalparallel

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 548




IJRET: International Journal of Research in Engineering and Technology el SSN: 2319-1163 | pl SSN: 2321-7308

5 Received Signal Error:1 White Signal 1 DOA 5 Received Signal Error:1 White Signal 1 DOA. 0 Received Signal Error: 1 White Signal 1 DOA
10 10 ) ™
1
WHITE \
SIGNAL1 | , . . .
O 8 10 8 10 g
2 2 =
10° | 10° 10°
10° 10° i°
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 00 St 200 w0 ) 500
Sample Interval Sample Interval Sample Interval
P Received Signal Eror1 White Signal 3 DOA P Received Signal Errar. 1 White Signal 3 DOA 5 Received Signal Error:1 White Signal 3 DOA
10 T 10 - 10 T
WHITE g
0t b
4
DOA .
o i 4
% 2 .
3 = =
2 2, 200
10
)
10 - 4
0 100 200 300 400 500 600 1" i L i L L 10" - - - .
Sample ntenval 0 100 200 E) 4m 500 600 o 100 00 a0 400 500 B0
Sarmple Interval Sample Interval
i Received Signal Error2 White Signal 1 DOA o Received Signal Error2 White Signal 1 DOA P Received Signal Error.2 White Signal 1 DOA
10 - 10 T 10 T
WHITE 1’ 1’ 5
4 1wt “
DOA
2 i 2
ir o i
o 3 o
2 3 e X
; 210 3
21 =
2
10 P
1 10°
g™ i i i i
o : i : i 0 100 2m 300 40 500 600 P i i i i
0 100 200 300 400 500 600 Sample Interval 0 100 200 300 400 500 00
Sample Interval Sample Interval
- Received Signal Error2 White Signal 3 DOA . Received Signal Error:2 White Signal 3 DOA .
10 - 1
& s iy o s
WHITE 5 ——DOA1Sig! o 10 i £ o 10
2 —— D02 Sigt 3 DOAL Sigf 3
SIGNAL 3  bosssint 2 —— DoA2,5ig1 = ———DOA2 Sig
o H —— DOA3,Sigl ——DOA3 Sigt
o 100 200 300 400 500 600 10" L i i i o™ L
DO A Sample Intenval 0 100 200 300 100 200 600 0 100 200 30 400 500 500
i Received Signal Error:2 White Signal 3 DOA Sample Interval Sarnple Interval
o ! 5 Received Signal Error:2 White Signal 3 DOA 5 Received Signal Errar.2 White Signal 3 DOA
10 - 1
o1’ ] ]
% ——DOA1,8ig2 fin) 10 i 16°
= —— DO0A2 Sig2 2y B i
e ¥ % ——DOAI Sig2
Sig2 g 5
" i = —— DOA, Sig2 = ——DOAZ Sig2
0 10 Z 40 500 600 — DoA3 Sig2 — Doz SR
ample Interval g1 L 0™ i i L i
0 00 200 300 40 E] 600 0 100 200 300 400 500 00
Sample Interval Sample Interval

Fig-5: Typical Received signal errors of various signaithwifferent DOA’s for LMS,NLMS, BBNLMS algorithm
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Fig-6: Polar plot of the various signals with differen®B’s for LMS, NLMS, BBNLMS algorithms
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CONCLUSIONS

In this paper several beam forming algorithms aesented
with some simulations and results. Using NMLS and
BBNLMS algorithms, compared to LMS algorithm, a 40%
and 55% increase in overall convergence rate ieaet in a
multi user multipath environment. With regards teaim
patterns, NLMS and BBNLMS algorithms are able teest
beams in the direction of the desired signal aratelnulls
elsewhere.

REFERENCES
[1] Carl B. Dietrich, Jr., Warren L. Stutzman, BygsKi Kim,
and Kai Dietze, “Smart Antennas in Wireless

Communications: Base- Station Diversity and Handesm
forming” IEEE Antennas and Propagation Magazinel, 4@,
No. 5, October 2000.

[2] Michael Chryssomallis, “Smart Antennas” IEEE tAnnas
and Propagation Magazine, Vol. 42, No. 3, June 2000

[3] G.S.N. Raju, Antennas and Wave propagatiorgrétm
International Publications, Singapore,2010.

[4] R. E. Collin and F. J. Zucker, Antenna ThedwWg-Graw
Hill, New York, 1969.

[5] R. E. Coallin, Antennas and Radiowave Propagatidc-
Graw Hill, New York, 1985.

[6] Frank Gross, “Smart Antenna For
Communication” Mcgraw-hill, September, 2005
[7]1 Angeliki Alexiou and Martin Haardt, “Smart Amea
Technologies for Future Wireless Systems: Trendsl an
Challenges”, IEEE Communication Magazine, Vol. K®,9,
pp. 90-97, September 2004.

[8] Bernard Widrow, Samuel D. Stearns, “Adaptivegi&il
Processing”, Pearson Education Asia, Second Iriegprint,
2002.

[9] Symon Haykin, “Adaptive filter theory”, Forthdéion,
Pearson Education, Asia, 2002.

[10] S. D. Blostein and H. Leib, “Multiple antenisgstems:
Role and impact in future wireless access,” IEEEMGD
Mag., vol. 41, no. 7, pp. 94-101, July 2003.

[11] J. H. Winters, “Smart antennas for wirelesstems,”
IEEE Personal Comm., vol. 5, no. 1, pp. 23-27, B&I88.

[12] A. J. Paulraj, D. Gesbert, and C. Papadigndrt
antennas for mobile communications,” Encyclopeda f
Electrical Engineering, John Wiley Publishing C2000, pp.
1-15.

[13]V. Kalinichev, “Analysis of beam-steering andrettive
characteristics of adaptive antenna arrays for haobi
communications,” IEEE Antennas Propagat. Mag., 48].no.

3, June 2001.

[14] E. Charpentier and J. Laurin, “An implemertaatiof a
directionfinding antenna for mobile communicatiamnsing a
neural network,” IEEE Trans. Antennas Propagat., 40, no.

7, July 1999

[15] M. S. Choi, G. Grosskopf, D. Rodhe, B. Kuhlo@,
Przyrembel, and H. Ehlers, “Experiments on DOAsaation

Wireless

and beam forming for 60 GHz smart antennas,” Proc.
Vehicular Technology Conference, 2003 (VTC 20034Rp¢
21-24 April 2003, Jeju, Korea, vol. 2, pp. 1041-304

BIOGRAPHIES

Amarnadh Poluri has obtained B.Tech degree
from Prasad Institute of Technology and
Sciences affiliated to INTUK in the year 2011.
Now he is pursuing M.Tech Degree in the
Department of Electronics &
Communications, Vignan's institute of
Information and Technology, Visakhapatnam. He isriested

in the fields of wireless and mobile communicatisignal
processing.

Ashish Kumar has obtained B.Tech degree
from Trident academy of technology affiliated
to BPUT in the year 2010.he obtained M.Tech
degree from Birla Institute of Technology
Mesra, Ranchi in the year 2013. Presently he

i js working as an Asst Professor in the
department of Electronics & Communication Enginegri
Vignan's Institute of Information Technology, and
Visakhapatnam. He is interested in the fields ofelgiss
communication, signal processing

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 551




