
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 531

IMPLEMENTATION OF PID CONTROL TO REDUCE WOBBLING IN A

LINE FOLLOWING ROBOT

Anirudh Sunil Nath 1, Aravind Kumar R2, Tarun Malik3
1 M.Tech Student, Department of Mechanical Engineering, SRM University, Chennai, India, ace.anirudh@gmail.com

2 B.Tech Student, Department of Telecommunication Engineering, SRM University, Chennai, India, armsr92@gmail.com
3 B.Tech Student, Department of Mechatronics, SRM University, Chennai, India, tarunmalik29@gmail.com

Abstract

A Proportional-Integral-Derivative (PID) Control System provides for controlling the value of a variable, in this case the position of
the robot, so that it is at or near a desired value, called the set-point, in this case on the centre of the line. In contrast to other control
systems this provides for the smoothest type of control with minor deviations and overshooting if implemented correctly. This paper
discusses, the concept, design and implementation of a line following robot that uses the PID control algorithm to govern its motion.
The control algorithm is implemented in real time by a pre-programmed microcontroller.

Keywords: PID, Robot, Sensor, Microcontroller and AI

---***---

1. INTRODUCTION

A line follower robot is a robot that is capable of navigating
while following a line on some terrain with the use of sensors
that tell the robot where it is. Just as we manipulate and
interact with objects through gestures, these robots have to be
taught some way to manipulate and understand its
surroundings to be able understand and comprehensively take
decisions. The decision variables are provided by these
sensors also referred to as the line sensors and the acquired
decision variables are passed through a decision device (in our
case the ATMega328 microcontroller in the Arduino UNO
board). The microcontroller in turn commands the actuators to
move the robot in the desired direction, giving the effect of
following the line. A line in this case is a part of the terrain
with a distinct colour that is in contrast with the background
and is usually of uniform width.

2. ROBOT CONSTRUCTION

The robot consists of the hardware (the tangible components)
and the software (the control logic that runs on the
microcontroller which guides the motion of the robot. The
major sub-systems of the line following robot and their
interactions are shown in Figure 1. The environment is defined
as the surroundings of the robot, with which the robot interacts
with the use of its actuators. The robot in turn can learn about
its surroundings in real time with the use of its sensors that
convert physical parameters of the environment in to electrical
signals that can be understood by the microcontroller. All of
these sub-systems are essential to the functioning of the robot.
Furthermore they must be seamlessly integrated together for
perfect functionality.

Fig-1: The Sub-Systems of the Line Following Robot

2.1 Line Sensor

The line sensors consist of an IR transmitter receiver pair for
differentiating between the line and the background. The
transmitter sends out IR rays and the receiver notes the
amount, or in other words the intensity, of IR rays received
and based on this it calculates if it is over the line or the
surrounding. If the line is of white in colour then it will reflect
more light as compared to any other colour. This difference in
reflected light helps us determine if the sensor is on the line or
on the surroundings. Using IR light reduces the noise due to
ambient light. For our experiment we have tested on a white
line roughly 3cm that runs on coloured backgrounds. Arrays
of such line sensors have been used to form our line sensor as
using just one or few such sensors amounts to very poor
source of information when it comes to following the line at
higher speeds.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 532

2.2 Decision Device

Decision device is a unit where the decision variables passed
by the line sensors are analysed, processed and then the
appropriate actions/response are initiated. For our robot we
have used the Arduino UNO microcontroller board and
Arduino Programming Language for coding it. The PID
control algorithm, discussed in the next section, is coded to
this microcontroller. It is the brain of the robot and thus it can
be said that the robot, to a certain degree, has artificial
intelligence.

2.3 Actuators

The actuators in this robot are brushed DC motors with a
reduction gearbox that operate at 60 RPM and have sufficient
torque to carry the robot. They are directly connected to the
wheels of the robot and cause the robot to move in the desired
direction. We have two motors controlling the two wheels.
Motion is achieved using the concept of differential drive.
Thus we can achieve motions of moving front, back and
turning left and right. The motion is controlled from the
microcontroller.

The two motors are used to drive the robot using the concept
of differential drive. In this the speed and direction of rotation
of the individual wheels are used to both move and turn the
robot.

2.4 Power Source

The power source provides electrical power to the robot and
all its components. It also consists of a set of regulators that
provide the required voltages to the various parts of the robot.
We choose a LiPo battery for this purpose because it has the
highest power to weight ratio. Regulators are used to provide
different levels of voltages for all the various components.

3. LINE FOLLOWING WITHOUT PID

After construction of the robot we programmed it follow the
line without the PID control algorithm. The method that was
used was to check the sensor condition and according to that
move the robot in the appropriate direction such that the robot
tries to centre itself over the line this was repeated by the
microcontroller hundreds of times a second. This was the
implementation of a direct mapping of the sensor condition to
the motion of the robot. The code was written so that the robot
follows a black line on a white background.

The result of this was that the robot followed the line. The
deviations observed were immense. In certain cases the line
sensors would all be off the line. This confused the robot since
it did not correspond to any condition of the robot. The robot
would continue in its last motion. This problem was solved by
figuring out which direction the robot was moving when it
moved off the line. This helped put it back on track.

The bigger problem was to develop an algorithm that would
allow the robot to follow the line smoothly even at high speed.
The solution to this is to implement the PID control algorithm
to control the motion of the robot.

4. LINE FOLLOWING WITH PID

PID is widely used control algorithm, mostly used in
industries, Robotics and other areas. The following is a brief
explanation of PID. The PID algorithm is explained with
taking a simple line following robot as an example, however
its application may not be only limited by this.

Our goal is to make the Robot follow the black line on the
white surface. For it to follow the line with less number of
errors and in a smooth manner we use PID Algorithm. It uses
an IR sensor to detect the change in the colour of the place it is
on. If it is a black, the sensor is on the line. If it is white, it is
on the background.

The sensor gives a HIGH value when it is on the black line &
a LOW if it is on the white background. We can use any
number of line sensors but for this example we will take 3
sensors into consideration. We will refer them as the Left,
Middle & Right Sensor.

First we will start off by describing the normal behavior of a
robot while following a line. While the robot moves over the
line it may come into the following conditions, if the line is
detected by the Left Sensor, then the robot is programmed to
go towards Left, if it is detected by the Right sensor, then it
goes towards right and similarly for center position of the line
it will go straight. The disadvantage in using this is that the
robot may wobble a lot, and if going too fast then it may lose
control and stop following the line, as discussed in the
previous section.

Fig -2: Comparison of robot with and without PID following a

line

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 533

When we introduce PID into the motion of Robot then it takes
the following factors into consideration: the speed with which
the robot is moving from side to side, is the robot centred over
the line and how long the robot is not centred on the line. By
introducing these, we can get a line following robot which will
be very smooth in its motion and can follow it at high speeds
as well.

In Figure 2, we can see that the line following robot without
PID follows the line with a lot of wobbling, whereas on the
other hand the one with PID is much smoother as compared to
the one without PID.
The understanding of PID is necessary for its proper
implementation. For this we need to look at the following
terms.

4.1 Target Position (Set-Point)

It is the required position for the robot to be in. For a line
following robot, it is over the center of the line. It is set to
zero. It is basically the mean position/the desired position. It is
set as a set point in the program, and all the positions of the
robot will be with respect to the target position.

4.2 Measured Position

This is a value depending upon the position of the robot with
respect to the line. It can either be positive or negative. It
involves calculating the distance between the current position
of the robot and the target position. It can either be to the right
or to the left of the target position, and based on that it is given
a positive or negative value.

4.3 Error

This is the difference between the Target Position and the
Measured Position. So the more far away the robot will be
from the Target position, the more the value of the error. The
magnitude of error depends on which side of the line the robot
is in. This also has positive and negative values.

4.4 Proportional Component

This component of the PID control, tells us how far away the
robot is from the line. A sensor condition of 011 tells us the
robot is closer to the line than the sensor position of 001. This
component is proportional to the position of the robot with
respect to the target position and proportionally varies the
output speed of the robot to bring it back to its intended
position.

A high proportional value would require a large change in the
output value, to correct the error.

4.5 Integral Component

This component measures the error that builds up over time.
This involves adding up the error after every step. The integral
value keeps building up after every sensor scan cycle of the
microcontroller.

This is basically used to tell that the output given by the
algorithm is not sufficiently changing the value of the error
and the output given needs to be varied more drastically to
reduce the error value. This is done for both positive and
negative errors.

4.6 Derivative Component

This component acts as the inverse of the integral component
in the PID control algorithm.

This component prevents the overshooting of the robot from
the line when correcting the error. This means that when the
error is reduces it stops the robot from moving so that it does
not continue its motion to produce error by moving to the
other side of the line.

4.7 PID Constants

There are 3 constants used in this algorithm. These are the
Proportional Constant (Kp), Integral Constant (Ki) and the
Derivative Constant (Kd). The values of these constant are set
beforehand by the programmer. The values of these constant
depend on various thing ranging from weight of the robot to
the size of it. The robot dimensions and the actuation system
also play an important role in determining the value of these
constants.

5. PID IMPLEMENTATION IN THE ROBOT

For our robot, we used Arduino as the microcontroller board,
with an ATMega328 on board. We initialized the various
constants such as Kp, Ki and Kd. We also give a value to the
Tp Variable, which is the maximum speed given to the wheels
for straight condition. Also we initialize last error, which is the
previous error value & other variables such as integral,
derivative and proportional. We set the value of the Measured
Position Variable for each sensor condition. These are the
values we set are as in Table 1.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 534

Table -1: Value for Measured Position

Sensor Measured
Position

Given Value

0-0-0 100
0-0-1 2
0-1-1 1
0-1-0 0
1-1-0 -1
1-0-0 -2
1-1-1 0

Then we calculated the error value as

Error = Measured Value – Target Position

A higher error value tells us that the robot is farther away from
the line, than a lower error value. We then set the integral
value as sum of current integral value & the error. The
derivative value was updated to the sum of current derivative
value & the last error.

We then calculated TURN Value as the sum of the product of
ERROR Value & the Kp constant, product of Ki constant and
integral and the product of Kd constant & the derivative. We
then give the output to the left wheel and the right wheel as a
PWM (Pulse Width Modulation) output, which directly
controls the speed of the motor.

LeftPWM = Tp + TURN

RightPWM = Tp – TURN

This results in both the wheels moving at different speed,
which depends on the sensor input and is computed above. At
the end of the program we set the last error value as current
error value.

This algorithm keeps repeating in a loop to give an effective
PID algorithm. The above explained computation happens
many times in a second to give an efficient line following
robot.

Another essential part of a PID algorithm is the setting of the
PID Constants, that are Kp, Ki and Kd values. The best way to
determine the perfect constant value would be to start from 0,
and then look for the best output after continuously
incrementing them. From the program execution, the robot
first checks the sensor input, and calculates the error
accordingly. The error value tells us how far our robot is from
the line. Then the derivative is calculated which tells us how
fast are we moving towards or away from the line. The
integral is then calculated which sums up the distance from the
line’s edge. Using this TURN value is calculated which is
added to the PWM values of the wheel.

PID can be further improved by increasing the number of
sensors, which would cause the robot to go faster at curves
and follow it more efficiently. The reason to this is that at
curves the corner sensors will sense the line and proportionally
are able to come back to the line, whereas for lesser number of
sensors the robot may just come off the line.

CONCLUSIONS

Before using the PID, the problem we faced were that the
robot did not follow the line smoothly. It wasn’t efficiently
following the line, so to improve this we implemented the PID
logic. We started with implementing the proportional part, and
wrote down the code for it. After running the robot we noticed
that while following the wobbling of the robot was lesser than
before, but it was still a big issue. We then added the integral
part to the code, and the robot was now following the line
much more efficiently with very less wobbling. The line
following was further improved after adding the differential
part to the code, which reduced the overshooting of the robot
while trying to return to the line. The robot developed and
used for testing by us is shown in Figure 3.

While implementing PID, we faced a major problem in setting
up the constants for the Proportional, Integral and Differential.
We started by setting each value as 1 and then made the
changes by either increasing it or decreasing it, and seeing the
changes in the behavior of the robot. The constants had to be
changed to many times before arriving at the perfect values.
After setting up P constant, and setting the Integral Constant,
even the P constant had to be varied a little.

Fig-3: The Robot

REFERENCES

[1]. Electrical Power Systems by Wadhwa C L
[2]. Modern Control Systems by Richard C Dorf and Bishop
[3]. Robotics modeling planning and control by Bruno
Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 535

[4]. Robot Buildings for Beginners by David Cook

BIOGRAPHIES

Anirudh is currently pursuing his M.Tech in
Robotics from SRM University, Chennai. His area
of interest is AI and Robotics

Aravind is currently pursuing his B.Tech in
Telecommunication Engineering from SRM
University, Chennai. Area of interest is Robotics
and Networking.

Tarun is currently pursuing his B.Tech in
Mechatronics from SRM University. His area of
interest is Robotics and Machine Learning.

