IJRET: International Journal of Research in Engineering and Technology el SSN: 2319-1163 | pl SSN: 2321-7308

CONNECTED ROMAN DOMINATION IN GRAPHS

M. H. Muddebihal®, Sumangaladevi?

1 2Department of Mathematics Gulbarga University, Gulbarga-585106, Karnataka, India
mhmuddebihal @yahoo.co.in, sumangal adevi.s@gmail.com

Abstract
A Roman dominating function on a graph G is a function f :V - {0,1,3 satisfying the condition that every vertex U1V for
which f (u) =0 is adjacent to at least one vertex VIV for which f (v) = 2. The weight of a Roman dominating function is the

value f (V) = Z f (V) . The Roman domination number (G) of G isthe minimum weight of a Roman dominating function on
viv

G . A Roman dominating function on G is connected Roman dominating function of G if either <V1 DV2> or <V2> is connected.
The connected Roman domination number J- (G) of G is the minimum weight of a connected Roman dominating function onG .

In this paper we establish the upper bounds, lower bounds and some equality results for /- (G) .
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1. INTRODUCTION called a head of a spider and the end verticexalled the

foot vertices.
Let G =(V,E) be a simple( p,q) graph with p=|V|
Let S be a set of vertices ardil] S. We say that a verteX
is a private neighbor of Uwith respect to S if

N[V] N SZ{U} . The private neighbor set ofl with
N(S) =N (v) and respect toS is the setpn[u, S] :{v; N[v]n S:{u}} :

A Roman dominating function (RDF) on a graph
G =(V, E) is a function f :V - {0,1,3 satisfying the
condition that every vertexd ]V for which f (u) =0 is

adjacent to at least one vert&s( ]V for whichf (v) =2.
The weight of a Roman dominating function is the

andq :|E|. We denote open neighborhood of a vertexf
G by N(V) and its closed neighborhood bL'{V] For a
seSOV (G)

vertex
N[S] =0 N[V]. The degree of a verteX denotes the
Vs

number of neighbors oK inG and A(G) is the maximum

degree of5. Also J(G) is the minimum degree of5. A

set S of vertices in G is a dominating set, if

N[S] =V(G). The domination numbey(G) of G is

the minimum cardinality of a dominating set. & is a subset
of V (G) then we denote t<38> the subgraph induced by

S. A subsetS of vertices is independent, (fS> has no
edge. For notation and graph theory terminologgdneral we
follow [2] or [6].

A Spider is a tree with the property that the reai®f all the
end paths of length two of results in an isolated vertex

valuef (V) = Z f(v). The Roman domination number
viv

VR(G) of G is the minimum weight of a Roman

dominating function orG .See [4] and [5].

A function f =(VO,V1,V2) is called connected Roman

dominating function (CRDF) of G if either <Vl DV2> or
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<V2> is connected. The connected Roman domination numbe

Vec (G) of G is the minimum weight of a CRDF & .

Independent Roman dominating functions were studigd
Adabi etal in [1]. A Roman dominating function

f =(VO,V1,V2) in a graph G is independent RDF or
simply IRDF, if V, JV, is independent. The independent
Roman domination numbely (G) of G is the minimum

weight of an IRDF o5 .

In this paper we establish the new concept callmthected

Roman domination number ofG defined by M. H.
Muddebihal and Sumangaladevi. The purpose of thiepis
to initialize the study of CRDF which gives onetbé direct
application of minimal CRDF is to win the war. Rhis we
need the continuous flow of communication betwdmnarmy
troops by supply of requirements with minimum cdsy,

placing weight 1 between the non adjacent verlai:tfe‘xs’l and
V, orV,, which yields a minimal CRDF.

2.RESULTS

Specific values of Connected Roman domination nusfoe
some class of graphs

In this section we illustrate the connected Romamidation
number by determining the value gfy- (G) for several
classes of graphs.

Theorem 1.

For the class of patig,, cyclesC , wheeldV , starK, ,
complete grathp, and complete bipartite grapK;Ln. We

have

1 ye(P)=p i pz2.
:pT-l-l if p=3.

2. yRC(Cp)=p—1 if p=3.
=p if p£3.

3. Vee (W,)=5-1.

a. Vee (Kyp) = a0 +1.

5. yRC(Kp):y+1.

6. Vrc (Km’n) =2a,.

Theorem 2:

Let f = (VO,Vl,VZ) be a - function of G. ThenV, is a
y-set of G if for each vertexv[1V, is adjacent to at least

one vertex ol, or the se¥, = @.

Proof: Let f =(V,,V,,V,) be a yy function ofG.
FurtherD ={v1,v2, ......... )/n} ,1<n< p be they-set and

D. ={V1,V2, ...... ,Vn} where 1<i < p be the ), -set of

G. IfV,#@, then there exists a vertex set
M ={v1,v2, ....... ,VJ-} where 1< j<n such that
M OV -D,. Hence M| =V,|

andN[M]—(V0 DV1)2|V2|. Now for every vertex set
Sz{ui;lsi < n} and{ui} UD. -V,, we haveieS| :|V1|-
Suppose there exists at least one vertex of
{w;1<i<n} OV, such thalN (Wl)D|V2|. Then f is a
Ve - function of G with <V1 DV2> as a/-set of G, a

contradiction. Hence for each vert& 1S must be adjacent

to at least one vertex of/,, which gives f as a Y-
function with V, as a y-set of G. If V,=¢.
Then|D| :|DC| Hence f is a Jj-function with V, as a

y-setofG.

Theorem 3

For any non-trivial tre€l , Vg (T) = 2y(T) if and only if

every non end vertex ofl is adjacent to at least one end
vertex.

Proof: Let H, :{\4;1si < p} and H, ={vj;1s i< p}

be the set of non end vertices adjacent to at leastend
vertex and the set of non end vertices which ateadfacent

to end vertex respectively. Lef :(VO,Vl,VZ) be a Y-
function ofG . Supposéd, Z @. Let D and D, be ay-set

and ). -set of G respectively. Then we have following cases.

Case 1: SupposeH, =1 or 2. Then we have two sub cases.
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Subcase 1.1: AssumeH, =1. Let {u} UH, such that
{u} UN (Hl). Then {u} vV, but {u} UDwhich gives
that Ve (T) > 2y(T) , a contradiction.

Subcase 1.2: AssumeH, =2 and {vl,vz} UH, such that
{wi,v,} ON(H,). Then {w,v,} OV, bufv,,v,} OD,
which gives /- (T) > 2y(T) , @ contradiction.

Case 2: SupposeH, =k and{V,;3<k<n} OH,. Then
O{v;1<l<n} O{v}. {v} OV, . But {v,} 0D and
{\/I —{V3,}}Dthich gives, Vec (T)>y(T) again a

contradiction.

For the converse from the above all casesHgt= . Then

|Vi|=|\/2|=|D|=|DC|. Hence
Voo (T) =2V, +Vy| = 2|Dc[ + 0= 2D| = /(T).
Theorem 4:

For any connected graph with p=3 vertices,

yRC(G)+{@Js p+1.

Proof: Let f=(V0,V1,V2) be a Ji.-function of G.
Further D ={v;1<i<n} and D. ={v;;1<j<n} be
the y/-set and)/,. -set of G respectively such thad [1 D .
Suppose{ui}DD has at least one private neighbor in
V-D¢. Then{u} OV, and (D, —{u})OV,. Suppose
there exists{vi} UD with no neighbor inV —-D..
Then{v.} OV,

y(G)
2

Henceyye (G) +{ J < |V1| + 2|V2| +1l<p+1

Theorem 5:

For any grapks , y(G) < Ve (G) < 3y(G) :

Proof: Let f =(VO,V1,V2) be a J/. -function of G. Since
V, dominate¥,, the connected induced subgraph of
(V1 DVZ) is a CRDF ofG .

Therefore,y(G) <V, OV,| <[V + 2V,| < yi (G).

Now we consider the following cases to establish tipper
bound for Jp (G) .Let D and D, be ay-set and)/ -set

respectively inG . Then we have following cases.

Case 1: SupposeG is a tree. Let§ ={V1,V2, ...... Y/

S, ={W,V,,......M}, 1<i<n be the set of nonend

vertices which are adjacent to at least one entkxemnd the
set of nonend vertices which are not adjacent tb\entices

respectively. Then |S_|=|V2| , |SZ|=|V1| and

Vo|=V -(S0S,).
Hence yx. (G) <[V, OV,| < V)| +2|V,| = 3D| < 3/(G).

Case 2. SupposeG is not a tree and\ ={V1,V2, ...... ,Vn}
be the set of all end vertices. Then we have fatlgw

subcases.

Subcase2.1: AssumeN # @, let
H, ={V1,V2, ...... ,Vk} UD.0OS, be the set nonend
vertices with at least one private neighbor\th— D, and

H, O D O S, be the set of nonend vertices with no private
neighbor inV = D, . Then(§ O H,) 0V, and H, 0V,.

Hence

Vec (G) <M, DV,| =|V,|+ 2V, < 3D| = 3(G).

Subcase2.2: AssumeN = @. Then§ =@ Let
H,,H, 0D, S, such thatH, has at least one private
neighbor inV —D. and H, has no private neighbor in

V —D.. Clearly H, 1V, and H, 01V,

Henceyie (G) =M, OV,| =|V||+2)V,| < 3D| = 3/(G)
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Theorem 6:

For any tred , Vg (T)ZiR(T) if and only if every

nonend vertex ofl is adjacent to exactly two end vertices or
if every nonend vertex of T is adjacent to at least three
vertices, then they are not adjacent.

Proof: Suppose there exists at least one nonend vertdx,of
which is adjacent to only one end vertex. Lkt be the
minimal independent Roman dominating set ®f and

f =(Vy,V1,V,) be a puc-function of T. Further let
[,,1, 01 with ||1| :|V1| and||2| :|V2| . Then each vertex
of 1,0V, in ig(T) and e (T). But 1,0V, and
N(1,) OV, in i(T), whereasN(l,) OV, and I, OV, in

Vec (T) , which gives )¢ (T) > (T) , a contradiction.

Suppose there exists a nonend vertex set

{\/i 1<i < n} adjacent to at least three end vertices such that

at least two vertices oﬁv,} are adjacent an{iN} be the set
of end vertices ofl Let AZ{Vi} . Then each vertex of
ALV, in Ve (T) But for the pair of adjacent vertices
(u,v) [ A with degu = degy, we haveulV,, vV,
and{N(v) n{N} OV, in i (T). Since each vertex o

is adjacent to at least three end vertidde,g(v) > & which

gives, Vrc (T) <ig (T) a contradiction.

Conversely, let f =(VO,V1,V2) be a Y. -function of T
and f = (VO',V1' ,VZ') be aiR (T) - function of T . Assume

statement of the Theorem holds. Lét be the minimal
independent Roman dominating set bf Further{ nl} and

{N} be the set of non end vertices and end vertices
respectively. Then{n} OV, or V,. Let {S, S} O{n}

such that{ S} O{V,} and {S}D{V,}. 1t {S}0OV,.
Then {S}O{V,}. If {s} D{V(;}. Then for each
(u}o{s},
(x, y)D{N(ui)n{N}} such that (xOy)OV, . Since
each{ui} of{%} has exactly two neighbm(sx, y) in Vl',

there exists exactly two neighbors

hence there exists{W} N (X) nN (y) such that

{W} aV,.  Clearly l\/1 DV2| = ’\/1 DV;‘. Hence
Vee (T) =ix(T).

Theorem 7:

Let G= Krmmzvmg ......... m, be the completen-partite graph

with m<m, <........ <m,.

a.If m =1, then yi (G) =2.

b.If M, =2, then i (G) = 4.

Proof: a. This case is obvious.

b. Let M be the partite set of sizay and N =V -M,

further UUM and VON such that f (u) =f (V) =2.

While every other vertexwW is in either M or N, let
f (W) =0. If there exists a vertett[1M n'V,, then there

must exists a verteX I N n'V, . If there also exists a vertex
yV, n (N —{X}) , then there must exists a vertex
zO{V, n(M —{W})} . Since fis an CRDF, we have

Vec (G) =4

Theorem 8:
Let T be any tree with p>3 vertices.
Theny (T) + ; (T) < Ve (T)

Proof: Let T be any tree withp >3 vertices. Suppose
D={V,V,,......¥,} and D, ={V,,V,,.....\.} where
1<i<n be they-set and V; -set of G respectively. Then
there exists a vertex séui} UD UD, of T adjacent to at
least one end vertex such tI'{aJli} 0V, and also there may
exists a nonend vertex s} OV —({u} OV) which are
not adjacent to end vertex such tl{aag} UV, .Which gives,

|D|+|D,| <V, OV,|. Hencey(T) + ; (T) < e (T) -
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Theorem 9:
Let G be any graph with y(G):yC(G). Then
Ve (G)=(G)+1c(G).

Proof: It is sufficient to prove this result for any cauted
graphs G. Let G be any connected graph with

¥(G)=V:(G) and D={v,V,,......\,} be the set of

n

vertices of G which forms p-set for G. Since

y(G) = Ve (G) Hence D also forms a connected
dominating set ofG . Supposd = (VO,Vl,VZ) is a CRDF of
G. Then |VO| =V-D, |V1| =@ and |D| =|V2|. Hence
Vec () =M +2MV,| = 2|D| =[D| +[D[ = #(G) + 1 (G)

Observation: For any graphG, J, (G) < Ve (G) .

Theorem 10:

Let G be any connected (p,q) graph. Then
Vec (G) =V (G) if and only if every verte>{\/i} of D¢
has at least two private neighbors\fi— D, where D, is a

Ve -set of G.

Proof: Let f ={V,,V,,V,} and g={VO',V1',V2'} be a
Ve -function and y-function of G respectively. Assume

D, :{Vl,vz ....... vn} be a ), -set of G. Then we consider
the following cases.

Case 1: Suppose there exists at least one veflm} of D
with exactly one private neighbor M — D . Then for every

{uk} D{ui} , we consider following sub cases.

Subcase 1.1: Assume no two vertices c{iuk} are adjacent in
G. Then{uk} OV, and { N (uk) N (V - D, )} OV, . But
{uk} Vv, and { N (uk) n (V -D. )} UV,, which gives,
Ve (G) > ¥ (G). a contradiction.

Subcase 1.2: Assumd]{uk;ls k< n} , there exists at least
two vertices of {uk} which are adjacent inG. Then
{uk} OV, or V,. If D{ uk} OV,. Then there exists
{M}O{N(u)n(V-D¢)} such thatO{v}OV,. But
{uk} H\YA and{vi} UV,, which gives, Ve (G) > Ve (G)

a contradiction. If]{ uk} [V,, then there exists at least two
vertices of{uj} D{ N (uk) N DC} such that{uj} av,.
ever){ u, O uj} OV,
Ve (G) > V= (G). a contradiction.

But for which gives

Case 2. Suppose there exists at least one ve{tb&a}(} which
has no neighbors iV — D, . Then{vvi} OV, or V, or V.
If {W,} av,. Ther{vvi} LV, again Ve (G) > Ve (G) a
contradiction. If{WI} OV, or V,. Then there exists at least
two vertices of{ Wj} UN (WI) such that{ WJ.} OV, . But
{Wj ON (Wj )} 0V,, which gives Ve (G) > Ve (G) a
contradiction.

Hence in all cases, we have/y. (G) > Ve (G) a
contradiction.

Conversely, let every verte{<vi} of D, has at least two
private  neighbors in V—D.. Then {V.} UV, and
{Nv)nv-D}0OV,,  aso {v}OV, and
{N()nV-D} 0V,

Hence yus (G) =]V, OV,| =V, OV,| = y (G).

We need the following Theorem to prove further Tieeo

Theorem A [2]:
For any connected graph G with A(G) <p-1,
y(G)=<x(G)=r(G).
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Theorem 11:

Let G be any connected graph WIN(G)< p-1.
Thenyw (G) < 1 (G) + % (G)

Proof: Let f={VO,V1,V2} be a Jq.-function of G.
Supposé.. ={V1,V2,.......,Vn} and
D, ={V,V,,.......\.} , where1<i <n be the . -set and

¥, -set respectively. Thei, (G) <V (G) . We consider the
following cases.

Case 1. Suppose J; (G) =), (G). Then {Dg OV, or

V,0V,) and {V-Dg OV,. Again we consider the
following subcases.

Subcase 1.1: Assume*:DC| =[\/2|. Then V,=¢ and
V =D¢|=|V,|.
Hence

Ve (G) =2V,| = 2Dc| =|Dc| +|Dy| = v (G) + ¥ (G)
Subcase 1.2: Assume#eDC| = [\/1 DV2| :
Then |V - DC| = |V0| )

Thus

Proof: We consider a minimal connected dominating Bt

of G . Since each vertex dD. connected dominating set of
G. Hence D, D(\/l DVZ). Suppose V, =@. Then
{Dg OV,, V| =[Dc|.
Vo (G) =2V,| = 2|Dc|. Hence yi (G)=2y,(G).
Then |V1| +|V2| :|DC| :
Ve (G) = M|+ 2V, | < 2v|+ 2V ] = V] +|V]] = 4D|
. Hence Vi (G) <2)¢ (G) . Thus Jire (G) < 24 (G)

which gives Clearly

Suppose V, # @. Clearly

Theorem 13:

Let G be any connected graph. II".)RC is a minimal
connected Roman dominating function @ and for every
{\/i}DDRC there exists at least one vertex of

N(v)OV ~ Dy
ThenV — D is Roman dominating function &

Proof: Let Dg. be a minimal connected Roman dominating
function of G . Suppose for eac{1\/i} [ Dge ., there exists at
least one verte>{ ui} UN (V.) such that{ ui} UV = Dge -
Then{ui} is not dominated by — D . HenceV — D

is not a RDF ofG . Thus for eacr{vi} [ D, there exists at

Ve (G) = 2|V2| +|V1| = 2[|V2| +|VJJ] - 2|DC| =|DC| +|Dt| ~e an)s?_ gh(eG\)ertex ofN (\/i ) [0V = Dg.. Clearly D, is a

.Case 2: Suppose), (G) <V (G) let D{Vi} 0D, UD..
Then {VI} aVv, or V, and D, —{Vi} 0V,. Since

Y. (G) <V (G). Hence there exists at least one vertex
{vj} D{Vi} and{vj} U D, such tha vj} V.

Hence

Ve (G) = 2Ve| + i <|Dc|+[Di] = v () + 1 (G)-
Theorem 12:

tet f=(V,,\,V,) be
Thenyir (G) < 2, (G)

a Vgc-function of G.

minimal connected Roman dominating function and
V — Dy is Roman dominating function @ .

Definition: A graph G is said to be Roman connected graph

if ¥ee (G) =2y(G).

Now we characterize the Roman connected graphsen t
following Theorem.

Theorem 14:

A graph G is Roman connected graph if and only if it has a

Vee-function f =(V;,V,,V,) with V| = @.
Proof: Let G be a graph andf :(VO,Vl,Vz) be @V -
function of G. If V, =@, by definition of yx. (G), V,
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dominatesV —V, . Otherwise a connected induced subgraph

of V,00V, dominates V—(V,00V,) and hence
y(G) <M OV =V + V]| <|V|+2V =y (G).

We consider the following cases.

Case 1. Suppose|\/1| Z@ and D be a y-set of G. Let
vV, andvOD. Then 2y(G)<2V,0V,|, a
contradiction.

Case 2: Suppose|Vl| Z@ and VL D. Then there exists at
least two neighbors ({fui} UN (V) such thaﬁ{ ui} UV, and
{ui} OD, which gives again, 2y(G) < 2|V1 DV2|, a

contradiction.

Since G is Roman connected. Th({M| =@.

Conversely, let f :(VO,Vl,VZ) be ay-function of G

with |V1| = @. Therefore Ve (G) = 2|V2| . Since |V1| =@,
by Theorem 2V, is a y-set of G such that|V2| = y(G).
Thus Ve (G) = 2|V2| = ZV(G). Hence G is Roman
connected graph.

Theorem 15:

For any connected graphG with
Vec (G) = 2y(G) if and only if VLIV with degree
p-¥(G).

p=2 vertices,

Proof: SupposeG has a vertexV with degreep—y(G)
such that vV (G) ifV, :{V}, V,=¢ and
V, =V —{V}. Then V, is a y-set of G and
f ={VO,V1,V2} is an CRDF withf (V) = 2y(G). Since
| (G)ZZy(G) for connected graphsf is a V-

function of G..

In order to CRDFf ={V0,V1,V2} to have weight2y(G)
either 1. |V1| = y(G) +1 and |V2| =@or 2 |V1| =@ and

|V2| :y(G). Any other arrangement of Weithy(G)
would have|V1| + |V2| < 2y(G) .

For 1, since |V2| =@. Then |V1| =V . By a Theorem of Ore

[3], y(G)sEp for a connected grapls on p vertices.

Thus p = y(G)+1S—g+l, which implies thatp < 2. It

is easily verified thaty/x. (Pz) =2= 2y( Pz) and P, has a
vertex of degree 1.

For 2, Let f ={V0,V1,V2} be a Jx.-function for G of
weight 2y(G) with |Vl|:go and |V2|:y(G). Since
V, =@, each edge of G joins V, and V,. Hence
deg/)=No| = Py =]V = p=]V,| = p-¥(G).

Theorem 16:
Let T be any tree with every nonend vertexTlofis adjacent
to at least one end vertex. The¢fa. (T) =2C, whereC is

the set of cut vertices of .

Proof: Let f = (VO,Vl,VZ) be a )/ -function of T . Since
each nonend vertex df is adjacent to at least one end vertex.
By definition of V- (G) there exists a connected Roman

dominating setD.. LV, and N (DRC) N { N} UV, such
thatV, = @, whereC and{ N} are the set of cut vertices and

end vertices of T respectively. CIearIy|C| :|V2|. Hence

Ve (T)=2)Vv,|=2C.
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