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Abstract

Ride quality is concerned with the feel of the pager in the environment of a moving vehicle. Ibie of the key indices in
determining comfort levels of a vehicle. Althoutjide comfort” evaluation is subjective in naturegesearchers have developed
mathematical models to study and evaluate vehidke performance. Some popular models for vehicle analysis are — quarter car
model, two dof (degree of freedom) and four dof bat model. These models model the chassis agdabiody. This work removes
this assumption and models the chassis of the leefisca flexible beam on a spring damper systetheafront and rear using Euler
beam theory. This elastic model has two dof — \elicunce and pitch, and has been compared withigie two dof model. Euler
beam theory and Lagrangian mechanics are used tivedéhe equations of motion. Finite element mettsodsed to validate this

model. Experimental validation of the natural freqaies of this flexible beam is presented.

Keywords. Flexible ride model, Elastic ride model

INTRODUCTION

Research in the area of vehicle dynamics has ssiyely
become more systematic and intensive since thg sities.
Mathematical modeling has become an important s$tep
understand the underlying dynamics of the systene T
development of computers has provided the compunziti
power to have high fidelity models of real systeisitibody
dynamics (MBS) [1], Finite Element Method (FEM) [&]c.
are widely used in mechanical design and analysis.

Vehicle ride quality is considered to be one of thest
important parameters to evaluate the performaneevehicle.
The designer has to achieve good ride comfortHerdriver
and passengers with acceptable control of bodiudéiand
adequate control of dynamic tyre loads within thestraint of
having a restricted amount of suspension workingcep
available. These issues are classified as ‘prirmidg/ and are
studied with the help of mathematical models [3Jm®@ of the
most popular and simple models are- quarter carei@d,
two dof half car model [4], four dof half car modé&l and
seven dof ride model [3]. These models considersiireng
masses and unsprung masses as rigid bodies. Hqowaver
reality the chassis is flexible and its flexibilityeeds to be
considered to completely understand the dynamiehidle
ride models which have incorporated the flexiblasgis are
based on flexible multibody dynamics [6]. Finiteeralent
method is used to model the sprung mass as aleelx@am or
as a flexible plate [7]. Some models use model ctolu
techniques to reduce the order of these models TBgse

models [6, 7, 8] are based on numerical simuladiot do not
have a close form solution.

This paper presents an analytical model considetimg
sprung mass as a flexible beam on a spring danygérns at
the front and rear. A flexible beam system hasnitdidegrees
of freedom. However, the variables of interesthiis tcontext
are - the overall translation and rotation of tlearm. Hence,
this model also has two degrees of freedom — boandepitch
like the conventional two dof half car model [4]hish is the
rigid body counterpart. Euler beam theory [9] iediso model
the beam and Lagrangian mechanics [10] along whith t
concept of tracking frame [11] is used to derive éguations
of motion. The conventional two dof model will beferred to
as 'rigid two dof model' and model developed irs thaper
will be referred to as ‘flexible two dof model’. @hmesults are
validated by finite element and experimental resula
comparison between both the models in time domait a
frequency domain is presented and the differences a
discussed. The paper is organized as follows: &ecfi
contains the vehicle models. Finite element modelifi a
flexible beam is explained in Section 2. Sectiopr&sents the
results and discussion, followed by summary in i8act.

VEHICLE MODELS

The two vehicle models compared in this paperthie.rigid
two dof model and the flexible two dof model, whizte
presented below.
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RIGID TWO DOF MODEL

A schematic of the rigid two dof model is shownFigure 1.
This model does not consider the sprung mass asprwmng
mass to be distinct. It has one combined mas$ \Which
represents half of a vehicle supported on frémtapdc, are
the front suspension stiffness and damping resgeyg}i and
rear suspensiork{ andc, are the rear suspension stiffness and
damping respectively). The springs and dampers are
considered to be at the extreme ends. The two degoé
freedom are - vertical displacement of the chasgjsand the
pitching motion §). The distance of the centre of gravity (CG)
from the front [;) and rear axlelf) are used to write the

The equations of motion are —

MX+Cx+Kx=Fu,+Fu, (1)

where,
0
M = m, C= G+G
o J c,l,—cl,

Fl{ ¢ CZ]FZ{ k kK
_Clll Czlz _klll kzlz

CZIZ_C1|1:|’ K :{ k1+k2

cli+cly

Juefiefz)x=l5]

displacements of the front and rear end as wath@ment arm
for the moment equationJ (s the moment of inertia). The
inputs to this model are the road excitations atftont ;)
and rearX;). The main assumptions of this model are-

a) Unsprung mass is not considered.

b) Sprung mass is considered to be a rigid body.

c) The linear suspension spring and viscous damping is
assumed.

d) Springs and dampers are considered to be at tlee end

e) Small pitch displacement.

kzlz - k1|1:|

k2|2_klll klli"'szz

C)

X\ I\
EAVERVER

Figurel. Rigid two dof half car model

FLEXIBLE TWO DOF MODEL

A schematic of the flexible two dof model is shoimnFigure
2. This model considers the sprung mass as an [belam
supported on a spring damper system at the frahtrear end
of the beam. The main assumptions of this modet}-are

a) Unsprung mass is not considered.

b) The beam is considered to undergo planar motion and

there is only in-plane bending.
c) The beam is made of homogeneous material.

d) Linear suspension spring and viscous damping is
assumed.

e) Small pitch displacement.

f) The extension of the spring due to the different
vibration modes has been neglected. The expression
for potential energy of the spring is written
considering the rigid body mode of vibration only.

In Figure 2, the coordinate systamis an inertial reference
frame whereas the coordinate systems a body fixed frame
system.
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Figure 2. Flexible two dof half car model

Position vectorR) of any pointP can be written as
ROGYD=Ro(MN+r(x 9= M9+ xb+r ¥ XL

The velocity of poinP with respect to the inertial frame can be written a
R(xy.)= YD n+vh+oTx{ xb+r { X'}
R(xy.)= ¥ n+(v+ ) h-ovb

The unit vector in the inertial frame is relatedhe body fixed frame by

~

cos) - sird b | A
sind  cod9 b,|=| 1,
0 0 1 b,

Using small angle approximatis®ind = &,co%9 = ‘and neglecting the nonlinear terms the velocitgaift P in the body frame is
given by equation (3).

R=(y+v+6%h ()
The kinetic energy of the bearfi) (can be expressed as
T =%pA.[(y2 +U2+ X207 + 200 x+ 20 y+ 2 X)
L
-1 my? + 3,62 + 1 ij v 2dx+ pAéj v xdx+ pij dxt miyl9 ?
2 2 1 1 1 2

1
wherem is the mass of the beam adg :§ mL® is the moment of inertia of the beam. Hgrnd 6 are the function of time

only whereasy is a function of both position and time. The pdigdrenergy of the beanUj with the spring and damper system is
formulated. The potential energy of the system dwmgributions from both the springs and strain gpef the beam. The potential
energy of the system is given by -
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1 2 1 2 n
=Ek1(y+ X0 - Y,) +§k2{ y+(L-% Y-y} +E|.[V dx (5)
L
According to the Extended Hamiltonian principal J,10
[oLdt+ [ow, dt=0
where,L is the Lagrangian and/..is the non-conservative work [10] and=T —U . The Rayleigh ternRRis given by [10] as
1 > 1 . 5. )\2
=2a+ 0=y I+ (v (1= 90 -y (©)
Using Lagrange’s equation,
d(oT) 4T U oR_
—| —|[-—+—+—=0 (7)
dtlog) 0q o0q 0dq
where, q is the generalized coordinate. The generaliseddimates for this system arey, 6,V. Using these generalised coordinates
and equation (7), the governing dynamical equatidriee system under consideration is given by ggug8) to (10).
" 1 o
m'y+pAIvdx+§ mid+ k( y+ y0)
L

+, (y+ (L= x)8) + 6 v+ 38)+ o v+ ( 1= %6) ®)
=k Yyttt oyt Gy

Joé+pAI'V'XO'X+% miye k(¥ 2)+Ky(L-x;) v+ k(L-x) 0 +cLy+c o=
L

©)
kx Vit axy+ k( L-x%) w+ 6 (L-%)y
) .
PRV + pAGE + §)+ Ela—x\:=0 (10)

kl,kz, G and Gare the stiffness and damping coefficients of frantl rear springs and dampers respectively. Theecprence of
assumption (f) of this model is that it gives aetarresults fox, = 0andx, = C. Hence, the spring and damper system has to be
attached at the ends. Howevag,andx,have been retained in the derivation even if threytaken to be zero in the simulations so as

to explain the derivation for a general locationspfings. Ifx, # 0& X, # 0, the problem can be formulated again with slight

modification of the potential energy expressionugtpn (5)) and Rayleigh term (equation (6)). Thedified potential energy
expression for general spring-damper location is -

U =%k1(y+ X0 +V- y1)2+% lo{ y+ (L-% p+v=y}*+Elfv"dx (11)

The modified Rayleigh term is- )

R=Zq(+ 40+ vy )+= o[ 'w( b 9o+ vy (12)
2 2

Using equation (4), (11), (12) and (7), the newdafegoverning equations of motion can be obtairdehceforth, this work would

consider the case of = 0andx, = C.

The natural frequencies and mode shapes are oththinsolving the free vibration problem, hence, daenping and base excitations
are not considered. The damping is neglected aguhatities of interest are the undamped natuegjuency and its corresponding
mode shapes. To determine the mode shapes arrdlrfegquencies, let

v(x.t)=V(xexp( jot) (13)
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o(t)=0exp(jat)
y(t) = Yexp{ )

Using equations (13) to (15) in (8) to (10), netilegthe damping and base excitation along withstiiestitution,

W(X=V(X+ ®
the equations are-

(k1+k2_rn:’~)2) Y—pAwZIde+O{ kx+ k(L= 5)}:0

~pAa? | XWdx+ Y{ ket K E 39—% mu?}+e{ K3+ X + 2)(2}:0

—pAPW - pAcPY + EMV =0

SubstitutinngdX: a'in equation (16),

L
pAra-0fkx + k(L= %)}
k, +k, - mw
Using equation (19) in (18),

: Al — _
EIW'V—pAwZW:pAw{p klejk;lejrrl;zf( - XZ)}J:/lawe

Y =

Ar)
(prad) AR (kx+ k(L= %)
Y= .
k, +k, — mo# k, + k, — mf
The general solution of equation (20) can be writis,
W(X) = gcoskx+ gsinkt acoshkx a sinhkx BrDO
wherek=4p—A\/Z B= psz D=k1x1+k2(L_ Xz)
’ Ik + k, - mw? k+ k- na?

Substituting the following expression in equati¢k¥) and using equation (19),

jxwmdx:ﬁ

phaif—iex k(L= )= mid |
©= 2 1 =mf-mg
o+ L)'= f ko I L g3 i |

_ A
o (L %) = B s K1 - mi

where, A =

m

where, {klxl-'- kz( L— XZ)_; mlaf} B
o 1
kX + g (L= )" - D(kl>s+ = 9= mhfj

(14)

(15)

(16)

17

(18)

(19)

(20)

(21)

(22)
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The boundary conditions used to solve this proldeen
1. The choice of the body fixed frarbayives'W/(0) = 0 andW( L) = LO
2. The bending moment at both the ends is zerag;wimplies

d*W(0 d*Wi
§ ) :Oand—( b =0
dx dx?
Using these four conditions and substituting equatP1) in the definitions af andg, a system of six homogenous equations
withx=[a, & & a, @ Pl asunknowns can be obtained as
Dx=0 (23)
where, Dis a 6 x 6matrix described below. The detailed steps are
UsingW(O) = 0 in equation (21),

a +a,~(B+ Dm)a+Dmg=0 (24)
UsingW( L) = LO in equation (21),

a,coskL+ a, sinkL+ a costkL+ g sintkl={ B-( D- ) gja+(D-L)mp = (25)
Using ElW"(O) = Qin equation (21),

a,-8=0 (26)
Using EIW"( L) =0 in equation (21),

—a, coskL— a, sinkL+ g coshkL+ g sintkl= (27)

Using equation (21) in definition of
a,sinkL— a,(coskL- }+ a sinhkL+ g( coskkl- )& K 4 Bla+kDLO =

or,, sinkL- a,( coskL- )+ a sintkL+ g( coshkl- )+ K +1 Bt m Dla+mkDLZ = (28)
Using equation (21) in definition ¢f
a, (KLsinkL+ coskL— )+ g ( sinkL- KL coskl) +

a, (KLsinhkL— coshkL+ )+ g ( KL costkL- sinkl)} -
S BKLa-k+DkLY =0
or,a, (kLsinkL+ coskL— }+ a ( sinkL- kL col} +

a, (KLsinhkL— coshkL+ )+ g ( KL costkL- sinlkl) -

1

29)
E(|3k2|_2+ DkZLZrQ)a+(%Dk2L2ml— kzjﬁ =0

Equations (24) to (29) can be written in the foriheguation (23) where,

1 0 1 0 -(B+Dm,) Dm
coskL sinkL coshL sinkl  ~{B+(D-LOm} (D-Qm
1 0 -1 0 0 0
D= —coskL — sirkL costikL sinkL 0 0
sinkL 1- cokL sinkkL coskL- 1 -k 4 BL+ m DI m KDL
KLsinkL sinkL- KL sinhkL- KL costkD 2|2 22
) —kL(B+sz) e+ XLDm
|\ +coskL - kL cokL coskL+ - dirkL 2 2
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x=[a, & & a a A

To ensure non trivial solutions the determinanthef coefficient matriXD has to be zero. This gives the value& cbrresponding to
the natural angular frequencies of the system.dJ8iese values df and assuming, =1, the other unknowns ix can be obtained,
which can then be used to compute the mode shajres equation (30).

V(X)=W(X- © (30)
(W(x) in equation (30) could be be obtained from equ(R1))

The obtained mode shapéx) will be used to solve the forced vibration plevh i.e., the system with spring, damper and base

excitation. Using separation of variables the ldispment of the beam as a function of space ang itinthe body fixed coordinate
system is given by equation (31).

v(x ) =V(Xr7() (31)
Substituting equation (31) in equation (8) and (9),

myppg V(9> mB+ Ky 8)+ K yo( L-j)+

(32)
a(y+xf)+o{ v(L-%)8 = ky+ ky+ ¢y ¢y
Joé+pAr7'jV(x) xdx+% miy kX y #)+
L
k,(L-%) y+ k(L-%) 0 +c,Ly+c,l20= (33)
kix i+ Gx Y+ k( L-x) y+  L-3 "y
Using equation (31) in (10), multiplying both sidesW(x) and integrating between 0 o
PATIV(IWC S de pAB[ XW( ) dxt
L L
(34)

pAT WY dxe R WX dxo

The equations (32) to(34) can be re-written ingtamdard form as in equation (1).
MX+Cx+Kx=Fu,+Fu,

where,
AT y.
oy
n Y, Yz
m 0.5mL yo, Aj' V(X dx
L
M=| 0.5mL J pA{ XV( %) dx

PAW(R dx o 4 XW X dx p A V)xW)x d
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G+e oxtg(l=x O

C=| clL c,? 0
0 0 0
k + K, kx+ k(L= %) 0
K=lkx-k% KX+ k(L %° 0
d*V(X)
_ 0 0 EI'[W(X) — dx_
c c, k, k,
I:1= C X Cz(l—_xz) 1F2= k1X1 kz( L= Xa)
0 0 0 0

Each mode shape obtained from equation (30) camséd in equation (32) to (34) along with numericékgration techniques to

L
obtain the corresponding time response functjpft) , bounce displacement of @, (t) +EHI (t)) and pitch displacement of CG

@ (t) .The general response of the beam in the body fiveddinate system is given by

V(X 9= 3 V0¥ (9 @)

whereV, (X) is the mode shape corresponding toitheatural frequency antj, (t) is the time response of the beam corresponding

to thei™ mode. The net bounce displacement and pitch diepiant of the CG is the summation due to each naodecan be
computed using equation (36) and (37).

YO =X (0 +-8(0) @)
o(t)= iﬁi (t) (37)

Equations (35) to (37) along with (32) to (34) amitial conditions provide a solution to the forcexkcitation problem.

FINITE ELEMENT MODELING

Finite element method has been used to calculatadtural frequency and its associated modes dfakible beam supported by two
springs at the both ends. The damping is not censitifor finite element analysis. The elementalatiqus of stiffness and mass
matrices have been derived for bending motion eflibam assuming Euler-Bernoulli bending theory.[E8jure 3 shows slender
beam supported by two springs at both ends. Thebealiscretized withN-1) two noded elements generatiNghodes. Figure 4

shows any arbitrary element with the two degredsesfdom per node. In Figure ¥, and V,,, represents the displacements‘dénd

(i+1)" node respectively ang and @, ,, represents the deflectionsibifand {+1)" node respectively.

/L.
l l L1\ 1 ]
)

Figure 3. Finite element model
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¢

Vi

||+1

Figure4. One finite element

The elemental stiffness and mass matrices are shoaguations (38) and (39) respectively.

156 22 54 - 1B
. _pAl| 22 4% -1B -B?
T 420| 54 -13 156 - 2P

-13 -32 -22 &2

(38)

where p is the densityA is the cross sectional area andltrethe length of the finite element.

12 d -12 6

. _EIl 61 4% -8 2?2
K =—3

F{-12 -4 12 -6

6l 2% -6 4°?

(39)

where E is the Young's modulus,is the flexural moment of inertia and this the length of the finite element.
The elemental spring and mass matrices of eacheeleare derived and assembled to give the comptatation of motion. The

complete equation of motion can be written as

Mgls +K 0 =0

(40)

where M is the global mass matrix whose size{ 8N x 2N), K ;is the global stiffness matrix whose size(2N x 2N) and

Qs is the nodal displacements whose size(ﬂ\l Xl). The boundary conditions have been applied byrparating the spring
stiffness at the*landN™ nodes. The eigenvalue and eigenvectors are cadulsing theeig command of MATLAE as follows:

[eval evef= eifK,M,)

(41)

whereevalgives the squares of the natural frequencieseaadgives the corresponding mode shapes.

RESULTSAND DISCUSSION

A comparison between the rigid and the flexible elsd
described in the previous sections is presente@. hEne
numerical parameters used for the simulation abelléted
(seeTable 3andTable 4 in the appendix. A MATLAB code
has been written to calculate the natural frequeeneind the
mode shapes for the flexible two dof model. Theursdt
frequencies and mode shapes obtained from the teoaly
solutions are validated using finite element arialybhe beam
is modeled as an Euler-Bernoulli beam. A total namdf 100
elements are considered with two degrees of freegem
node. The first four modes of the flexible two dobdel are
used to calculate the time response of the beamfifigt four

natural frequencies obtained from the analyticdutgan of
flexible two dof model and FEM model is tabulatedTiable
1.

Table 1. Natural frequencies (in Hz) of the flexible two dof
model from analytical and FEM approach.

Model 01 (QF) 03 (Q7)
Analytical | 10.4837 18.2553 243.8926 670.1111
FEM 10.4861 18.2404 243.8914  670.1108

A small scale experimental setup has been builterify the
natural frequencies obtained from the analyticadeloThe
setup consists of a mild steel beam on two sprisfgequal
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stiffness at the ends. The parameters of this sateipisted in both the vibration mode shapagX)) and the pitching motion
the appendix (see Table 5). The beam is exciteti wit (©), and hence it gives a better visualization of ghgsical
impulse hammer and two accelerometers are mourttasoa scenario of a beam is undergoing transverse visrats well
points on the beam to capture the response. Theilsep as pitching motion. it is clear Figure 5 that theyse functions
hammer and accelerometers are connected to a Data obtained using the analytical model and finite elatrmethod
Acquisition System. A picture of the experimentatup is are identical. Thus, Figureslong with Table lvalidate the
shown in Figure 3. The first four natural anguleeguencies analytical method derived in the previous section.

of this beam obtained from the analytical modelMFEnd

experiment are listed in Table 2. } Exp y obtained FRF of

i} T T

Table 2. Natural angular frequencies (in rad/s) of the
experimental beam from analytical model, FEM maated |

]

.'T- &
AN Y

experiment i | \
£ Iil‘, I'j
Model 1 (0] ®3 Wy ?:i \l 3 ‘l " f“\“._ﬂ! ,"J ‘
Analytical | 66.892 | 185537 | 311.019] 549.781 ol S 11 T | S I T N |
FEM 66.892 185.538 311.018 549.7843 3 f‘ | | I‘| g :‘.‘ J:i | | |
Experiment| 69.12 182.20 314.11 552.34 i o Vi ‘.l il i

U

1
1
i
1
1
1
I
I
|
| i | IE
0 @ ™ Tred 20 EEm 40
[oed angular frequency(rad/s)

1 1 1
2] @ il

Figure 4. Experimentally obtained FRF of bounce
acceleration.

15 z %
Length along the beam {m}

Figure 3. Experimental setup to verify natural frequencies (a)

Figure 4shows the acceleration frequency response function
(FRF) obtained from the experimental setup. Peals lue
observed in this experimentally obtained FRF feqtrencies
close to the natural frequencies predicted by thalyical
model. This is supportive of the analytical solatidescribed

in the previous section. However, peaks are alsm doer
frequencies which are not the natural frequencigs, 450
rad/s, 402 rad/s etc. These could be due to thecooated
structural damping of the system, the cylindricads welded

at the end part of the beam to hold the springs;urformity /
of beam etc. ; % ; 5 ; : 3 % ;

The mode shapes of the beam have been obtaineg th&in Feneintong thebeam ()

analytical model and finite element method. FigGrehows (b)

the shape function i.eW(x), computed using the analytical

method (see Figure 5 (a)) and finite element met{smb Figure5. Shape-function (W(x)) along the length of the beam

Figure 5 (b)). The shape function&/(x) were chosen instead obtained using analytical method (a) and FEM (b).
of the vibration mode shapes (V(x)) because it éffect of
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The impulse response function of a dynamic system lee
used to compute the response of the dynamic sysieamy
arbitrary excitation using the Duhamel’s Integri2]. Hence,
to understand and compare the dynamic responseneof
models, it is important to analyze the unit impulssponse of
both the models. The simulation is run for 5 secoadd the
first four modes of the flexible two dof model habeen
considered to compute the time response. Figuskows the
bounce displacement (in m) and pitch displacenmiantagian)
for unit impulse excitation. It is clear from Figu8 (a) that the
rigid two dof model under predicts the bounce @ispment
(by more than 50%) and has a lower settling timecaspared
to the flexible two dof model (~ 30%). Referring Egure 6
(b), the rigid two dof model over predicts the hitc
displacement (~ 50%) and has a higher settling timse
compared to the flexible two dof model (~ 50%). Tpitch
response of the rigid two dof model is sluggisit@aspared to
that of the flexible two dof model.

ot bounce response of rigid and flexible 2 DoF half car model to unit impulse
T T T T T T T T

——rigid model
———flexible model

Displacement

Time

f rigid and flexible 2 DoF half car model to unit impulse impulse
T T T T

—rigid model
—~flexible model

pitch

(b)

Figure 6. Bounce displacement (a) and pitch (b) response of
the rigid two dof model and flexible two dof modelunit
impulse.

It is a common practice in vehicle ride dynamicstiody the
response of the mathematical models to sinusoixtitagion.

Road surface excitation is irregular/random, butcdn be
expressed as combination of sines and cosinestiwathelp of
Fourier Transform. Hence, it is essential to stthdyresponse
of these models to sinusoidal base excitation. fidre end is

excited by a sinusoid of amplitude 0.01 m and aagul

Vs
frequencyz rad/second. The rear end is excited by the same

sinusoid but with a phase lag which can be compusaty the
length of the vehicle and velocity. The velocityaken to be 1
m/s and simulation is run for 30 seconds and tts¢ 4i modes
of the flexible two dof model have been considered.

It can be seen from Figure 7 (a) that the rigid ted model
predicts lower displacement amplitude as compacedhé
flexible two dof model. The flexible two dof model
displacement plot (Figure 7 (a)) shows that thedmaissibility
is high because the output amplitude (0.04 m)us fones the
input amplitude (0.01 m). Referring to Figure 7, (the pitch
amplitude predicted by the rigid two dof modelasver than
the flexible two dof model (~50%).

bounce response of rigid and flexible 2 DoF half car model to sinusoidal excitation
0.0s T
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w10 pitch respanse of rigid and flexible 2 DaF half car madel to sinusaidal excitation
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. “flexible model

Time
(b)
Figure7. Bounce displacement (a) and pitch (b) response of
the rigid two dof model and flexible two dof model
sinusoidal excitation.

It can be concluded from Figure 6 and Figure 7 thate are
significant differences in the time domain respaensé the
rigid two dof model and the flexible two dof modE&igure 8
shows the frequency response function (FRF) ofbibkence
displacement. The FRF of the rigid two dof modeb(ife 8
(b)) has been computed by using the transfer fanctrhe
same method cannot be used for the flexible twordo€el
because of the non-linelt andK matrices. The FRF (Figure
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8 (a)) is obtained by solving the time domain syster a
sinusoid of amplitude 1 and some angular frequerite
amplitude of the response is then calculated aotiegl on the
log-log plot corresponding to the angular frequer&# points
were used to draw this FRF and these discrete gpaieat then
plotted to obtain an approximate sketch of the kbeun
displacement FRF of the flexible two dof model. Twnts
associated with a box in this plot (see Fig8fa)) show the
peaks corresponding to the four natural frequensigsh are
absent in the FRF of the rigid two dof model (ségufe 8
(b)). The amplitude ratio predicted by the rigicbtadof model
is lower than that of the flexible two dof model.

The additional modes of the system are respongdrlghe
differences in dynamics of both the models. Theilfle two
dof model is closer to reality than the rigid twaf dnodel and
significant differences are observed between bothntodels,
hence, the flexible two dof model should be useddanitial
design calculations and control instead of thedriyivo dof
model.

5 Bounce FRF of 2 DoF Flexible Model

bounce amplitude ratio(dB)

o' [l _
10 10’ 10 10
angular frequency(rad/s)

(@)

Bounce FRF of Rigid 2 DoF Model
T T

- .,
‘ 870

bounce amplitude ratio(dB)

g al‘;glular irequency(radgs) d
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Figure 8. Frequency response of bounce of the flexible two

dof model (a) and the rigid two dof model (b).

SUMMARY

A modified two dof model which accounts for thexilglity
of the chassis by modeling it as a flexible beamrésented it
in this paper. Complete set of the resulting dymaneiquations
are presented. The impulse response and sinuseisiabnse
of the models are compared. The rigid two dof madeler
predicts the bounce displacement for both the atoit. The
rigid two dof model shows a sluggish pitch resporse
compared to the flexible two dof model to unit irfg® The
pitch amplitude predicted by the rigid two dof mbdeless
than that predicted by the flexible two dof modektnusoidal
excitation. The settling time of the impulse resgwof bounce
is lower for the rigid two dof model while for thatch it is
lower for the flexible two dof model. The bounce
displacement amplitude ratio FRF of the flexibleotwlof
model exhibits more peaks and higher amplitudeorakhe
flexible two dof model is closer to reality as coamgd to the
rigid two dof model, and hence should be used fitiail
design calculations, simulations and control desidm
extension of the current work would be to develdipw dof
vehicle ride model with sprung mass at the frond agar.
Another work would be to account for tyre flexibjliproperly
instead of considering it as a linear spring. linportant to
note that only the first four have been used forusations and
the spring damper system are considered at the. drus
analytical model has been validated using FEM and
experiments.
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LIST OF SYMBOLS

ms sprung mass
Cu,C damping coefficient of suspension
(1/4/11 : front and 2/r/22: rear)

ki, ko suspension stiffnflssront and

2: rear)

J pitch momehinertia

Xty X road excitation input to rigid model

(f: front and r: rear)

Y1, Yo road excitation inpa flexible

model (1: front and 2: rear)

Xs bounce displacement of rigid two
dof model
y bounce displacement of CG of

flexible two dof model

e

pitch displacam of CG of

flexible two dof model

10} pitch dispéaeent of rigid two dof
model

Vi(X) Mimode shape

ni(t) time responga@isplacement in

body fixed frame due td'imode

material
I
chassis
L

X1, X2

ends (1:front and 2:rear)

ABBREVIATIONS

initial velogibf vehicle
distance of tBG from the front

distance of BG from the rear
density of ttieassis material
area of cresstion of chassis
Young’s Modslof the chassis

area momehinertia of the

length of clsés
distance of the sarggon from the

Dof

Degree of freedom

cG Centre of gravity

ERE Frequ.ency Response
Functior

APPENDIX

Rigid two dof model simulation parameters

Table 3. Physical parameters used in the simulations of the
rigid two dof model

Sprung massf) 603.043 kg
Front suspension stiffneds 35000 N/m
Rear suspension stiffnekg( 32000 N/m
Distance of CG from front{) 2.125m
Distance of CG from redgj 2.125m
Front damping coefficient() 2570 Ns/m
Rear damping coefficient{) 2480 Ns/m
Moment of inertiad) 3630.84 kgrh
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Flexible two dof model simulation parameters
Table 4. Physicalparameters used in the simulations of the
flexible two dof model

Sprung massngy) 603.043 kg
Front suspension stiffneds ) 35000 N/m
Rear suspension stiffneds)( 32000 N/m
Distance of CG from front {) 2.125m
Distance of CG from redgf 2.125m
Front damping coefficient() 2570 Ns/m
Rear damping coefficierty) 2480 Ns/m
Moment of inertia J) 3630.84 kgrh
Young’'s Modulus (E) 210 GPa
Area moment of inertia, (1) 2.6X T’
Density,p 7850 kg/m
X1&Xo Om

Experimental setup parameters
Table 5. Physical parameters of the experimental setup

Sprung massny) 1.7786 kg
Front suspension stiffneds ) 13757 N/m
Rear suspension stiffneds)( 13757 N/m
Distance of CG from front {) 0.5125m

Distance of CG from reds] 0.5125m
Moment of inertia J) 0.1557 kgrh
Young’'s Modulus (E) 210 GPa
Area moment of inertia, (1) 5.57X1m’
Density,) 7850 kg/m
X, andx, Om
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