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Abstract 

Ride quality is concerned with the feel of the passenger in the environment of a moving vehicle. It is one of the key indices in 
determining comfort levels of a vehicle. Although, “ride comfort” evaluation is subjective in nature, researchers have developed 
mathematical models to study and evaluate vehicle ride performance. Some popular models for vehicle ride analysis are – quarter car 
model, two dof (degree of freedom) and four dof half car model. These models model the chassis as a rigid body. This work removes 
this assumption and models the chassis of the vehicle as a flexible beam on a spring damper system at the front and rear using Euler 
beam theory. This elastic model has two dof – vehicle bounce and pitch, and has been compared with the rigid two dof model. Euler 
beam theory and Lagrangian mechanics are used to derive the equations of motion. Finite element method is used to validate this 
model. Experimental validation of the natural frequencies of this flexible beam is presented. 
 
Keywords: Flexible ride model, Elastic ride model 
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INTRODUCTION 

Research in the area of vehicle dynamics has progressively 
become more systematic and intensive since the early sixties. 
Mathematical modeling has become an important step to 
understand the underlying dynamics of the system. The 
development of computers has provided the computational 
power to have high fidelity models of real systems. Multibody 
dynamics (MBS) [1], Finite Element Method (FEM) [2] etc. 
are widely used in mechanical design and analysis. 
 
Vehicle ride quality is considered to be one of the most 
important parameters to evaluate the performance of a vehicle. 
The designer has to achieve good ride comfort for the driver 
and passengers with acceptable control of body attitude and 
adequate control of dynamic tyre loads within the constraint of 
having a restricted amount of suspension working space 
available. These issues are classified as ‘primary ride’ and are 
studied with the help of mathematical models [3]. Some of the 
most popular and simple models are- quarter car model [4], 
two dof half car model [4], four dof half car model [5] and 
seven dof ride model [3]. These models consider the sprung 
masses and unsprung masses as rigid bodies. However, in 
reality the chassis is flexible and its flexibility needs to be 
considered to completely understand the dynamics. Vehicle 
ride models which have incorporated the flexible chassis are 
based on flexible multibody dynamics [6]. Finite element 
method is used to model the sprung mass as a flexible beam or 
as a flexible plate [7]. Some models use model reduction 
techniques to reduce the order of these models [8]. These 

models [6, 7, 8] are based on numerical simulation and do not 
have a close form solution. 
 
This paper presents an analytical model considering the 
sprung mass as a flexible beam on a spring damper system at 
the front and rear. A flexible beam system has infinite degrees 
of freedom. However, the variables of interest in this context 
are - the overall translation and rotation of the beam.  Hence, 
this model also has two degrees of freedom – bounce and pitch 
like the conventional two dof half car model [4], which is the 
rigid body counterpart. Euler beam theory [9] is used to model 
the beam and Lagrangian mechanics [10] along with the 
concept of tracking frame [11] is used to derive the equations 
of motion. The conventional two dof model will be referred to 
as 'rigid two dof model' and model developed in this paper 
will be referred to as 'flexible two dof model’. The results are 
validated by finite element and experimental results. A 
comparison between both the models in time domain and 
frequency domain is presented and the differences are 
discussed. The paper is organized as follows: Section 1 
contains the vehicle models. Finite element modeling of a 
flexible beam is explained in Section 2. Section 3 presents the 
results and discussion, followed by summary in Section 4. 
 

VEHICLE MODELS 

The two vehicle models compared in this paper viz. the rigid 
two dof model and the flexible two dof model, which are 
presented below. 
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RIGID TWO DOF MODEL 

A schematic of the rigid two dof model is shown in Figure 1. 
This model does not consider the sprung mass and unsprung 
mass to be distinct. It has one combined mass (ms) which 
represents half of a vehicle supported on front (k1 and c1 are 
the front suspension stiffness and damping respectively) and 
rear suspension (k2 and c2 are the rear suspension stiffness and 
damping respectively). The springs and dampers are 
considered to be at the extreme ends. The two degrees of 
freedom are - vertical displacement of the chassis (xs) and the 
pitching motion (φ). The distance of the centre of gravity (CG) 
from the front (l1) and rear axle (l2) are used to write the 

displacements of the front and rear end as well as moment arm 
for the moment equation (J is the moment of inertia). The 
inputs to this model are the road excitations at the front (xrf) 
and rear (xrr). The main assumptions of this model are- 
 

a) Unsprung mass is not considered. 
b) Sprung mass is considered to be a rigid body. 
c) The linear suspension spring and viscous damping is 

assumed. 
d) Springs and dampers are considered to be at the ends.  
e) Small pitch displacement. 

 
The equations of motion are –  
 

1 1 2 2+ + = +Mx Cx Kx F u F u&& &            (1) 
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Figure1. Rigid two dof half car model 

FLEXIBLE TWO DOF MODEL 

A schematic of the flexible two dof model is shown in Figure 
2. This model considers the sprung mass as an Euler beam 
supported on a spring damper system at the front and rear end 
of the beam. The main assumptions of this model are – 
 

a) Unsprung mass is not considered. 
b) The beam is considered to undergo planar motion and 

there is only in-plane bending. 
c) The beam is made of homogeneous material. 

d) Linear suspension spring and viscous damping is 
assumed. 

e) Small pitch displacement. 
f) The extension of the spring due to the different 

vibration modes has been neglected. The expression 
for potential energy of the spring is written 
considering the rigid body mode of vibration only.  
 

In Figure 2, the coordinate system n is an inertial reference 
frame whereas the coordinate system b is a body fixed frame 
system.
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Figure 2. Flexible two dof half car model 

 
Position vector (R) of any point P can be written as 

2 1 2
ˆ ˆˆ( , , ) ( ) ( , ) ( ) ( , )x y t y x t y t n xb v x t b= + = + +0R R r

     (2) 
The velocity of point P with respect to the inertial frame can be written as 

( ) ( ) ( ){ }
( ) ( ) ( )

2 2 3 1 2
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ˆ ˆ ˆ ˆˆ
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The unit vector in the inertial frame is related to the body fixed frame by 

1 1

2 2

33

ˆ ˆcos sin 0
ˆ ˆsin cos 0

ˆ ˆ0 0 1

bθ θ n

θ θ b n

nb
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Using small angle approximation sin ,cos 1θ θ θ≈ ≈ and neglecting the nonlinear terms the velocity of point P in the body frame is 
given by equation (3).

 
2̂( )y v x bθ= + +R && & &      (3) 

The kinetic energy of the beam (T) can be expressed as 

2 2 2 2

2 2 2
0

1
( 2 2 2 )
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T ρA y x x y y x
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∫

∫ ∫ ∫

& & && & && & &

& & && & && & &

                                              (4) 

where m is the mass of the beam and 2
0

1
J mL

3
=  is the moment of inertia of the beam. Here y and θ  are the function of time 

only whereas v  is a function of both position and time. The potential energy of the beam (U) with the spring and damper system is 
formulated. The potential energy of the system has contributions from both the springs and strain energy of the beam. The potential 
energy of the system is given by -  
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( ) { }2 2

1 1 1 2 2 2

1 1

2 2 L

U k y xθ - y k y (L - x )θ y EI dxν ′′= + + + − + ∫                                                                                              (5) 

According to the Extended Hamiltonian principal [10], 
 
 

where, L is the Lagrangian and Wnc is the non-conservative work [10] and L T U= − . The Rayleigh term, R is given by [10] as 

( )22
1 1 1 2 2 2

1 1
( )

2 2
R c (y x y ) c y L x - yθ θ= + − + + −& && & & &                                                                                                                      (6) 

Using Lagrange’s equation, 

0
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 ∂ ∂ ∂ ∂− + + = ∂ ∂ ∂ ∂ & &
                                                                                                                                                         (7) 

where, q is the generalized coordinate. The generalised coordinates for this system are - , ,y vθ .  Using these generalised coordinates 

and equation (7), the governing dynamical equations of the system under consideration is given by equation (8) to (10). 
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                                                                                                                                                  (10) 

 

1 2 1 2, andk ,k c , c are the stiffness and damping coefficients of front and rear springs and dampers respectively. The consequence of 

assumption (f) of this model is that it gives accurate results for1 20and 0x x= = . Hence, the spring and damper system has to be 

attached at the ends.  However, 1 2andx x have been retained in the derivation even if they are taken to be zero in the simulations so as 

to explain the derivation for a general location of springs. If 1 20 & 0x x≠ ≠ , the problem can be formulated again with slight 

modification of the potential energy expression (equation (5)) and Rayleigh term (equation (6)). The modified potential energy 
expression for general spring-damper location is - 

( ) { }2 2

1 1 1 2 2 2

1 1

2 2 L

U k y xθ v - y k y (L - x )θ v y EI dxν ′′= + + + + + − + ∫                                                                                 (11) 

The modified Rayleigh term is-  

( )22
1 1 1 2 2 2

1 1
( )

2 2
R c (y x v y ) c y L x v - yθ θ= + + − + + − +& && & & & & &                                                                                                        (12) 

Using equation (4), (11), (12) and (7), the new set of governing equations of motion can be obtained. Henceforth, this work would 

consider the case of 1 20and 0x x= = . 

The natural frequencies and mode shapes are obtained by solving the free vibration problem, hence, the damping and base excitations 
are not considered. The damping is neglected as the quantities of interest are the undamped natural frequency and its corresponding 
mode shapes.  To determine the mode shapes and natural frequencies, let 

( ) ( ) ( )expx,t V x j tν ω=                                                                                                                                                                   (13) 
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( ) ( )expθ t j tω= Θ                                                                                                                                                                            (14) 

( ) ( )expy t Y j tω=                                                                                                                                                                             (15) 

Using equations (13) to (15) in (8) to (10), neglecting the damping and base excitation along with the substitution,  

( ) ( )W x V x x= + Θ
 

the equations are-  
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Using equation (19) in (18), 
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The general solution of equation (20) can be written as, 
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Substituting  the following expression in equation  (17) and using equation (19),        
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The boundary conditions used to solve this problem are  

1. The choice of the body fixed frame b gives (0) 0W =  and ( )W L L= Θ   

2. The bending moment at both the ends is zero, which implies 
2

2

(0)
0

d W

dx
= and 

2

2

( )
0

d W L

dx
=   

Using these four conditions and substituting equation (21) in the definitions of α and β, a system of six homogenous equations 

with 1 2 3 4[ ]Ta a a a α β=x as unknowns can be obtained as 

=Dx 0                                                                                                                                                                                                   (23) 
where, D is a 6 6× matrix described below. The detailed steps are  

Using ( )0 0W =  in equation (21), 
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Equations (24) to (29) can be written in the form of equation (23) where, 
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[ ]1 2 3 4

T
a a a a α β=x

 
To ensure non trivial solutions the determinant of the coefficient matrix D has to be zero. This gives the values of k corresponding to 

the natural angular frequencies of the system. Using these values of k and assuming1 1a = , the other unknowns in x can be obtained, 

which can then be used to compute the mode shapes using equation (30). 

( ) ( )V x W x x= − Θ                                                                                                                                                                          (30)

 (W(x) in equation (30) could be be obtained from equation (21)) 
The obtained mode shape V(x) will be used to solve the forced vibration problem i.e., the system with spring, damper and base 
excitation.  Using separation of variables the displacement of the beam as a function of space and time in the body fixed coordinate 
system is given by equation (31). 

( , ) ( ) ( )v x t V x tη=                                                                                                                                                                                (31) 
Substituting equation (31) in equation (8) and (9), 
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Using equation (31) in (10), multiplying both sides by W(x) and integrating between 0 to L, 
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The equations (32) to(34) can be re-written in the standard form as in equation (1).   
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Each mode shape obtained from equation (30) can be used in equation (32) to (34) along with numerical integration techniques to 

obtain the corresponding time response function ( )i tη , bounce displacement of CG( ( ) ( ))
2i i

L
y t tθ+  and pitch displacement of CG 

( )i tθ .The general response of the beam in the body fixed coordinate system is given by 

0

( , ) ( ) ( )i i
i

v x t V x tη
∞

=

=∑                                                                                                                                                                         (35) 

where, ( )iV x  is the mode shape corresponding to the i th natural frequency and ( )i tη  is the time response of the beam corresponding 

to the i th mode. The net bounce displacement and pitch displacement of the CG is the summation due to each mode and can be 
computed using equation (36) and (37).  

1

( ) ( ( ) ( ))
2i i

i

L
y t y t tθ

∞

=
= +∑                                                                                                                                                                 (36) 

1

( ) ( )i
i

t tθ θ
∞

=
=∑                                                                                                                                                                                     (37) 

Equations (35) to (37) along with (32) to (34) and initial conditions provide a solution to the forced excitation problem.  
 
FINITE ELEMENT MODELING 

Finite element method has been used to calculate the natural frequency and its associated modes of the flexible beam supported by two 
springs at the both ends. The damping is not considered for finite element analysis. The elemental equations of stiffness and mass 
matrices have been derived for bending motion of the beam assuming Euler-Bernoulli bending theory [13]. Figure 3 shows slender 
beam supported by two springs at both ends. The beam is discretized with (N-1) two noded elements generating N nodes. Figure 4 

shows any arbitrary element with the two degrees of freedom per node. In Figure 4, iv  and 1iv + represents the displacements of i th and 

(i+1)th node respectively and iϕ and 1iϕ + represents the deflections of i th and (i+1)th node respectively.  

 
 

 

 

 

Figure 3. Finite element model 

1k  2k  
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Figure 4. One finite element 
 

The elemental stiffness and mass matrices are shown in equations (38) and (39) respectively. 

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

e

l l

l l l lAl

l l

l l l l

ρ
− 

 − −
 =

− − 
 − − − 

M                                                                                                                                      (38) 

where ρ is the density, A is the cross sectional area and the l is the length of the finite element. 

2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

l l

l l l lEI

l ll

l l l l

− 
 −
 =
− − − 
 − 

K                                                                                                                                                 (39) 

where E is the Young’s modulus, I is the flexural moment of inertia and the l is the length of the finite element. 
The elemental spring and mass matrices of each element are derived and assembled to give the complete equation of motion. The 
complete equation of motion can be written as  

G G G Gq q+ =M K 0&&                                                                                                                                                                              (40) 

where GM is the global mass matrix whose size is ( )2 2N N× , GK is the global stiffness matrix whose size is ( )2 2N N× and 

Gq is the nodal displacements whose size is ( )2 1N × . The boundary conditions have been applied by incorporating the spring 

stiffness at the 1st and Nth nodes. The eigenvalue and eigenvectors are calculated using the 'eig' command of MATLAB® as follows: 

[ ] ( ), ,G Geval evec eig= K M                                                                                                                                                           (41) 

where eval gives the squares of the natural frequencies and evac gives the corresponding mode shapes.  
 
 

RESULTS AND DISCUSSION  

A comparison between the rigid and the flexible models 
described in the previous sections is presented here. The 
numerical parameters used for the simulation are tabulated 
(see Table 3 and Table 4) in the appendix. A MATLAB code 
has been written to calculate the natural frequencies and the 
mode shapes for the flexible two dof model. The natural 
frequencies and mode shapes obtained from the analytical 
solutions are validated using finite element analysis. The beam 
is modeled as an Euler-Bernoulli beam. A total number of 100 
elements are considered with two degrees of freedom per 
node. The first four modes of the flexible two dof model are 
used to calculate the time response of the beam. The first four 

natural frequencies obtained from the analytical solution of 
flexible two dof model and FEM model is tabulated in Table 
1.  
 
Table 1. Natural frequencies (in Hz) of the flexible two dof 
model from analytical and FEM approach. 

Model ω1 ω2 ω3 ω4 
Analytical 10.4837 18.2553 243.8926 670.1111 
FEM 10.4861 18.2404 243.8914 670.1108 
 
A small scale experimental setup has been built to verify the 
natural frequencies obtained from the analytical model. The 
setup consists of a mild steel beam on two springs of equal 

iv  1iv +

iϕ  1iϕ +

i  1i +
 l  
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stiffness at the ends. The parameters of this setup are listed in 
the appendix (see Table 5). The beam is excited with an 
impulse hammer and two accelerometers are mounted at two 
points on the beam to capture the response. The impulse 
hammer and accelerometers are connected to a Data 
Acquisition System. A picture of the experimental setup is 
shown in Figure 3. The first four natural angular frequencies 
of this beam obtained from the analytical model, FEM and 
experiment are listed in Table 2.   
 
Table 2. Natural angular frequencies (in rad/s) of the 
experimental beam from analytical model, FEM model and 
experiment 
 

Model ω1 ω2 ω3 ω4 
Analytical 66.892 185.537 311.019 549.781 
FEM 66.892 185.538 311.018 549.783 
Experiment 69.12 182.20 314.11 552.34 

 

 
Figure 3. Experimental setup to verify natural frequencies 

 
Figure 4 shows the acceleration frequency response function 
(FRF) obtained from the experimental setup. Peaks can be 
observed in this experimentally obtained FRF for frequencies 
close to the natural frequencies predicted by the analytical 
model. This is supportive of the analytical solution described 
in the previous section. However, peaks are also seen for 
frequencies which are not the natural frequencies e.g., 150 
rad/s, 402 rad/s etc. These could be due to the unaccounted 
structural damping of the system, the cylindrical rods welded 
at the end part of the beam to hold the springs, non-uniformity 
of beam etc. 
The mode shapes of the beam have been obtained using the 
analytical model and finite element method. Figure 5 shows 
the shape function i.e., W(x), computed using the analytical 
method (see Figure 5 (a)) and finite element method (see 
Figure 5 (b)). The shape functions (W(x)) were chosen instead 
of the vibration mode shapes (V(x)) because it has effect of 

both the vibration mode shapes (V(x)) and the pitching motion 
( Θ ), and hence it gives a better visualization of the physical 
scenario of a beam is undergoing transverse vibration as well 
as pitching motion. it is clear Figure 5 that the shape functions 
obtained using the analytical model and finite element method 
are identical. Thus, Figure5 along with Table 1validate the 
analytical method derived in the previous section.  
 

 
Figure 4. Experimentally obtained FRF of bounce 

acceleration. 

 

      (a) 

 

(b)
 

Figure 5. Shape-function (W(x)) along the length of the beam 
obtained using analytical method (a) and FEM (b). 
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The impulse response function of a dynamic system can be 
used to compute the response of the dynamic system to any 
arbitrary excitation using the Duhamel’s Integral [12]. Hence, 
to understand and compare the dynamic response of the 
models, it is important to analyze the unit impulse response of 
both the models. The simulation is run for 5 seconds and the 
first four modes of the flexible two dof model have been 
considered to compute the time response. Figure 6 shows the 
bounce displacement (in m) and pitch displacement (in radian) 
for unit impulse excitation. It is clear from Figure 6 (a) that the 
rigid two dof model under predicts the bounce displacement 
(by more than 50%) and has a lower settling time as compared 
to the flexible two dof model (~ 30%). Referring to Figure 6 
(b), the rigid two dof model over predicts the pitch 
displacement (~ 50%) and has a higher settling time as 
compared to the flexible two dof model (~ 50%). The pitch 
response of the rigid two dof model is sluggish as compared to 
that of the flexible two dof model. 
 

 

(a) 

 

(b) 

Figure 6. Bounce displacement (a) and pitch (b) response of 
the rigid two dof model and flexible two dof model to unit 
impulse. 
 
It is a common practice in vehicle ride dynamics to study the 
response of the mathematical models to sinusoidal excitation. 
Road surface excitation is irregular/random, but it can be 
expressed as combination of sines and cosines with the help of 
Fourier Transform. Hence, it is essential to study the response 
of these models to sinusoidal base excitation. The front end is 

excited by a sinusoid of amplitude 0.01 m and angular 

frequency 
4

π
 rad/second. The rear end is excited by the same 

sinusoid but with a phase lag which can be computed using the 
length of the vehicle and velocity. The velocity is taken to be 1 
m/s and simulation is run for 30 seconds and the first 4 modes 
of the flexible two dof model have been considered. 
 
It can be seen from Figure 7 (a) that the rigid two dof model 
predicts lower displacement amplitude as compared to the 
flexible two dof model. The flexible two dof model 
displacement plot (Figure 7 (a)) shows that the transmissibility 
is high because the output amplitude (0.04 m) is four times the 
input amplitude (0.01 m). Referring to Figure 7 (b), the pitch 
amplitude predicted by the rigid two dof model is lower than  

the flexible two dof model (~50%).  
 

 
(a) 

 
(b) 

Figure7. Bounce displacement (a) and pitch (b) response of 
the rigid two dof model and flexible two dof model to 
sinusoidal excitation. 
 
It can be concluded from Figure 6 and Figure 7 that there are 
significant differences in the time domain responses of the 
rigid two dof model and the flexible two dof model. Figure 8 
shows the frequency response function (FRF) of the bounce 
displacement. The FRF of the rigid two dof model (Figure 8 
(b)) has been computed by using the transfer function. The 
same method cannot be used for the flexible two dof model 
because of the non-linear M and K matrices. The FRF (Figure 
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8 (a)) is obtained by solving the time domain system for a 
sinusoid of amplitude 1 and some angular frequency. The 
amplitude of the response is then calculated and plotted on the 
log-log plot corresponding to the angular frequency. 27 points 
were used to draw this FRF and these discrete points are then 
plotted to obtain an approximate sketch of the bounce 
displacement FRF of the flexible two dof model. The points 
associated with a box in this plot (see Figure 8(a)) show the 
peaks corresponding to the four natural frequencies which are 
absent in the FRF of the rigid two dof model (see Figure 8 
(b)). The amplitude ratio predicted by the rigid two dof model 
is lower than that of the flexible two dof model.  
The additional modes of the system are responsible for the 
differences in dynamics of both the models. The flexible two 
dof model is closer to reality than the rigid two dof model and 
significant differences are observed between both the models, 
hence, the flexible two dof model should be used to do initial 
design calculations and control instead of the rigid two dof 
model.  
 

 
(a) 

 
(b) 

Figure 8. Frequency response of bounce of the flexible two 
dof model (a) and the rigid two dof model (b). 
 

SUMMARY 

A modified two dof model which accounts for the flexibility 
of the chassis by modeling it as a flexible beam is presented it 
in this paper. Complete set of the resulting dynamics equations 
are presented. The impulse response and sinusoidal response 
of the models are compared. The rigid two dof model under 
predicts the bounce displacement for both the excitation. The 
rigid two dof model shows a sluggish pitch response as 
compared to the flexible two dof model to unit impulse. The 
pitch amplitude predicted by the rigid two dof model is less 
than that predicted by the flexible two dof model to sinusoidal 
excitation. The settling time of the impulse response of bounce 
is lower for the rigid two dof model while for the pitch it is 
lower for the flexible two dof model. The bounce 
displacement amplitude ratio FRF of the flexible two dof 
model exhibits more peaks and higher amplitude ratio. The 
flexible two dof model is closer to reality as compared to the 
rigid two dof model, and hence should be used for initial 
design calculations, simulations and control design. An 
extension of the current work would be to develop a four dof 
vehicle ride model with sprung mass at the front and rear. 
Another work would be to account for tyre flexibility properly 
instead of considering it as a linear spring. It is important to 
note that only the first four have been used for simulations and 
the spring damper system are considered at the ends. The 
analytical model has been validated using FEM and 
experiments. 
 
REFERENCES 

1. Amirouche, Farid., Fundamentals of Multibody 
Dynamics, Birkhäuser, Boston, ISBN:  978-0-8176-4236-
5,2006. 

2. Krysl, P., A Pragmatic Introduction to the Finite Element 
Method for Thermal and Stress Analysis, World Scientific 
Publishing Co. Pvt. Ltd., Singapore, ISBN-10: 981-256-
876-X | ISBN-13: 981-270-411-6, 2006. 

3. Crolla, D.A., Vehicle Dynamics – Theory into Practice, 
Proceedings of the Institution of Mechanical Engineers, 
Part D: Journal of Automobile Engineering 210(2): 83-94, 
April 
1996,doi:10.1243/PIME_PROC_1996_210_250_02. 

4. Wong,J.Y., Theory of Ground Vehicles, John Wiley & 
Sons, ISBN: 978-0-470-17038-0. 

5. Sun, T., Zhang, Y. and Barak, P., 4-DOF Vehicle Ride 
Model, SAE Technical Paper 2002-01-1580, presented at 
SAE Automotive Dynamics and Stability Conference, 
Detroit, USA, May 2002. 

6. Goncalves, J.P. and Ambrόsio, J. A., Optimization of 
Vehicle suspension Systems for Improved Comfort of 
Road Vehicles Using Flexible Multibody Dynamics, 
Nonlinear Dynamics 34: 113-131, 2004.   

7. Ibrahim, I.M., Crolla, D.A. and Barton, D.C., Effect of 
Frame Flexibility on the Ride Vibration of Trucks, 
Computers and Structures 58(4): 709-713, February 1996, 
doi:10.1016/0045-7949(95)00198-P. 



IJRET: International Journal of Research in Engineering and Technology    e-ISSN: 2319-1163 p-ISSN: 2321-7308 

 

__________________________________________________________________________________________ 
Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org                                                                             23 

8. Verros, G. andNatsiavas, S., Ride Dynamics of Nonlinear 
Vehicle Models Using Component Mode Synthesis, 
Journal of Vibration and Acoustics 124(3): 427-434, July 
2002,doi:10.1115/1.1473828. 

9. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 
Tata McGraw-Hill Education Pvt. Ltd., New Delhi, 
ISBN-13: 978-0-07-070122-9, 2010.  

10. Goldstein, H., Poole, C.P.  and Safko, J., Classical 
Mechanics, Pearson, ISBN: 978-81-317-5891-5, June 
2001.  

11. Nayfeh,A. H., Emam,S. A., Preidikman,S., and 
Mook,D.T., An Exact Solution for the Natural 
Frequencies of Flexible Beams Undergoing Overall 
Motions, Journal of Vibration and Control 9(11): 1221-
1229, November 2003, doi: 10.1177/1077546304030692. 

12. Meirovitch, L., Analytical Methods in Vibration, Prentice 
Hall, New York, ISBN: 978-0023801402, 1967. 

13. M. I. Friswell, John E. T. Penny, S. D. Garvey and Arthur 
W. Lees, Dynamics of Rotating Machines Book, 
Cambridge University Press, ISBN-10: 0521850169, 
2010. 
 

LIST OF SYMBOLS 

ms                                                     sprung mass 

c1,c2                                                damping coefficient of suspension 

(1/f/11 : front and 2/r/22: rear) 

k1, k2                               suspension stiffness (1: front and 

2: rear) 

J                                      pitch moment of inertia 

xrf, xrr                                          road excitation input to rigid model 

(f: front and r: rear) 

y1, y2                               road excitation input to flexible 

model (1: front and 2: rear) 

xs                                                      bounce displacement of rigid two 

dof  model 

y    bounce displacement of CG of 

flexible two dof model 

θ                                     pitch displacement of CG of 

flexible two dof model 

φ                                      pitch displacement of rigid two dof 

model 

V i(x)                                ith mode shape 

ηi(t)                                 time response of displacement in 

body fixed frame due to ith mode  

v0                                    initial velocity of vehicle 

l1                                     distance of the CG from the front 

end 

l2                                     distance of the CG from the rear 

end 

ρ                                     density of the chassis material 

A                                    area of cross section of chassis 

E                                     Young’s Modulus of the chassis 

material 

I                                      area moment of inertia of the 

chassis 

L                                     length of chassis 

x1, x2                               distance of the suspension from the 

ends (1:front and 2:rear)  

 
 
ABBREVIATIONS 

Dof 
 

Degree of freedom 

CG Centre of gravity 
 

FRF Frequency Response 
Function 

 

 

APPENDIX 

Rigid two dof model simulation parameters 
Table 3. Physical parameters used in the simulations of the 

rigid two dof model 
 

Sprung mass(ms) 603.043 kg 

Front suspension stiffness (k1) 35000 N/m 

Rear suspension stiffness(k1) 32000 N/m 

Distance of CG from front (l1) 2.125 m 

Distance of CG from rear(l2) 2.125 m 

Front damping coefficient (c1) 2570 Ns/m 

Rear damping coefficient (c2) 2480 Ns/m 

Moment of inertia(J) 3630.84 kgm2 
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Flexible two dof model simulation parameters 
Table 4. Physical parameters used in the simulations of the 

flexible two dof model 
 

Sprung mass (ms) 603.043 kg 
Front suspension stiffness (k1) 35000 N/m 
Rear suspension stiffness (k2) 32000 N/m 
Distance of CG from front (l1) 2.125 m 
Distance of CG from rear(l2) 2.125 m 
Front damping coefficient(c1) 2570 Ns/m 
Rear damping coefficient(c2) 2480 Ns/m 
Moment of inertia (J0) 3630.84 kgm2 
Young’s Modulus (E) 210 GPa 
Area moment of inertia, (I) 2.6X10-5m4 

Density, ρ 7850 kg/m3 
x1&x2 

 
0 m 

 
Experimental setup parameters 

Table 5. Physical parameters of the experimental setup 
 

Sprung mass (ms) 1.7786 kg 
Front suspension stiffness (k1) 13757 N/m 
Rear suspension stiffness (k2) 13757 N/m 
Distance of CG from front (l1) 0.5125 m 
Distance of CG from rear(l2) 0.5125 m 
Moment of inertia (J0) 0.1557 kgm2 
Young’s Modulus (E) 210 GPa 
Area moment of inertia, (I) 5.57X10-10m4 

Density,(ρ) 7850 kg/m3 
x1 and x2 

 
0 m 

 


