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Abstract 
This paper brings out implementation of Least Mean Square (LMS) algorithm using two different architectures. The implementations 
are made on Xilinx Virtex–4 FPGA as part of realization of an Active Vibration Control system. Both fixed point and floating point 
data representations are considered. A comparison between the two is brought out on the basis of a Finite State Machine (FSM) 
model suitable for both fixed & floating point implementations. The floating point LMS algorithm in VHDL (Very High Speed 
Integrated Circuit (VHSIC) Hardware Description Language), uses the Intellectual Property (IP) cores available from Xilinx Inc. 
Results from the two architectures with respect to area as well as performance clearly shows floating point implementation to emerge 
as the better option in all respects. 
 
Index Terms: Least Mean Square Algorithm, Field programmable gate arrays (FPGA), floating point IP cores, Finite 

State Machine, Active Vibration Control. 

-----------------------------------------------------------------------***---------------------------- ------------------------------------------- 

1. INTRODUCTION 

The Active techniques are best suited for vibration control in 
Aircraft/Aerospace structures where the size, weight, volume 
and cost are very crucial. Active vibration control can be 
achieved on typical structures on the basis of principle of 
super position theorem in which an opposite phase signal is 
generated using the control software and is  superimposed on 
the structure in order to cancel out or suppress the effect of 
primary vibrations. But the system characteristics are more 
dynamic in nature, so adaptive systems are more appropriate 
and efficient in performance compared to conventional 
systems with fixed structure. Adaptive systems have the 
ability to track changes in system parameters with respect to 
time and provide optimal control over much broader range of 
conditions.  The LMS algorithm is a widely used technique for 
adaptive filtering. The Least Mean Square algorithm is an 
adaptive algorithm introduced by Widrow and Hoff in 1960[1-
5]. A reference input received / monitored using either 
accelerometer or smart PZT (lead zirconate titanate)  sensor is 
suitably manipulated in the control filter, and the filter 
response (which is a spectrum of cancellation force) is applied 
in an equal and opposite direction using PZT/MFC (Macro 
Fiber Composite) actuators. The Adaptive control algorithm 
dynamically updates the filter coefficients based on signal 
obtained from another set of error sensors. LMS algorithm is 
best suited for Vibration control because of its simplicity and 
also various advantages it has over other adaptive algorithms 
[3]. LMS algorithm is implemented using tapped delay line 
FIR (finite impulse response) filter structure, and is preferred 

as it does not require matrix inversion, off-line gradient 
estimations of data and also for the ease of implementation on 
finite hardware.  
 
The implementation of adaptive filter could be done using an 
ASIC (Application-Specific Integrated Circuit) custom chip, 
general purpose processor (GPP) or DSP processors. Though 
ASIC meets all the hard constraints, it lacks the flexibility that 
exists in the other two, and its design cycle is much longer 
involving huge expenditure. Reconfigurable systems for 
prototyping of digital system are very advantageous. Using 
reconfigurable devices like FPGAs for Digital Signal 
Processor (DSP) applications provides the flexibility of GPP, 
DSP processors, and the high performance of dedicated 
hardware using ASIC technology [6]. Modern FPGAs contain 
many resources that support DSP applications such as 
embedded multipliers, multiply accumulate units (MAC), and 
processor cores. These resources are implemented on the 
FPGA fabric and optimized for high performance and low 
power consumption. Also many soft IP cores are available 
from different vendors that provide a support for the basic 
blocks in many DSP applications [7, 15, 16].  
 
The FPGAs can embed more and more functionality into a 
small silicon area without compromising any of the 
performance parameters like speed and accuracy. FPGAs can 
be viewed as a structural decomposition of an array of 
configurable logic blocks integrated together to form any 
complex digital systems. The programming procedure and 
usage is much similar to its predecessors like microprocessor/ 
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DSP families but the dynamic-reusability and re-
configurability of its own individual hardware elements makes 
it most suited for the embedded systems applications. In the 
recent years FPGA systems are preferred due to their greater 
flexibility and higher bandwidth, resulting from the parallel 
architecture. 
 
There have been many efforts to implement LMS algorithm in 
FPGA platforms.  Mohammad Bahura and Hassan Ezzaidi [8] 
have presented a sequential architecture on FPGA using 
Virtex-II-Pro development board and Xilinx system generator 
(XSG). Here a pipelined LMS based adaptive noise 
cancellation is implemented to remove power line interference 
from electrocardiogram (ECG). Fixed point LMS algorithm 
implementation in FPGA is described in [9] along with the 
effect of word length in the expected results from the 
theoretical values. An improved hardware architecture of LMS 
algorithm implementation in FPGA is presented in [10] and 
the performance in terms of amount of resources is compared 
with a Software architecture. A FSM based LMS adaptive 
filter implemented for Active Noise control systems is 
described in [11]. 
 
All the above mentioned papers use fixed point number 
representation. An active vibration control system, when 
implemented on the finite hardware should provide precise 
results in terms of accuracy and the error level should be as 
minimal as possible to achieve maximum control. Floating 
point representation has an edge over the fixed point 
representation in this context. A comparison between the fixed 
and floating point approach in terms of its implementation in 
FPGA hardware has been made in terms of resource 
utilization, accuracy & speed. To this end, both fixed and 
floating point method based LMS implementations have been 
realized using the same FSM model and the performance is 
tested with respect to the FPGA resources utilized, speed of 
convergence and accuracy level. In this paper the outcome of 
the study is presented. 
 
The paper is structured as follows.  In Section II LMS 
algorithm is briefly described. III (A) gives a review of the 
number representations. III (B) gives the state machine model 
which is used for fixed and floating point implementations. It 
also explains how FPGA incorporates parallelism with FSM. 
III (C) tells about the fixed point implementation, III (D) 
describes floating point implementation with IP cores, 
showing how resource re-usability is improved. Results and 
discussions are given in Section (V). 
  
2. LMS ALGORITHM 

2.1 Introduction  

The LMS algorithm is an adaptive algorithm using an iterative 
process, in which the mean square error is minimized by the 
method of steepest descent by moving in the direction of 

negative gradient. The block diagram representation is shown 
in Fig-1. It is simple, easy to implement in finite hardware and 
it does not require complex calculations such as matrix 
inversions or correlation functions. Hence it is widely used in 
active vibration control of aerospace structures.  
 

 
 

Fig1. Block diagram of an LMS adaptive filter. 
 
The LMS Algorithm consists of three basic processes: 
 
2.1.1 Filtering Process 

The output of filter y(n) is a linear combination of input signal 
X(n) and the weight vector W(n), [where X(n)={x(n),x(n-
1),x(n-2),…x(n-N-1)}, and W(n)={w(0),w(1),w(2),…w(N-1) 
and N, filter length]  and the output of the filter is 
 

y (n) = X (n)*W (n)     (1) 
* indicates convolution operation 
 
2.1.2 Error Estimation  

Error signal, e(n) is obtained by comparing the filter output 
with the desired response d(n). The aim is to make y(n) as 
close as possible to d(n), thus error signal is  
 

e(n) = d (n) – y(n)     (2) 
 
2.1.3 Adaptation Process  

Mean-square error performance function f (w) is 
 

f (w)=E{|e(n) |2}      (3) 
 
According to the least mean square criterion, the optimal filter 
parameter w should minimize the error performance function 
f(w). Using gradient-descent methods, the weight update 
formula is 
 

w (n+1) = w(n) + µ.e(n).x(n)    (4) 
 
Where μ is the adaptive step size parameter and it controls the 
convergence characteristics of the filter. 

Where 

x (n) = input signal 

y (n) = output signal 

d (n) = desired signal 

e (n) = error signal 
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3. FPGA IMPLEMENTATION OF LMS 

ALGORITHM 

3.1 Review of Number Representation 

FPGA implementation is an overall process of converting a 
higher level system description into a lower level 
implementation in terms of signal flow through hardware 
circuits, as bit streams. Data flow in the form of these streams 
of bits can be represented either in fixed point or floating point 
number format and arithmetic. 
 
3.1.1 Fixed Point Number Representation 

Fixed point representation assigns a fixed width to integer and 
fraction. For example, for a 32 bit number can be considered 
16 integer bit and 16 fractional bits (shown in Fig-2), which 
can go up to the range of 216-1 to -216  (integer part i.e., 65535 
to -65536) and with a fractional range of 1/216  (i.e.,  
0.0000152587890625)  .  
 

 
 

Fig2. Fixed point number representation. Here w and wf 
represents total width and fraction width respectively 

 
3.1.2 Floating Point Number Representation 

Floating point numbers are, in general, represented 
approximately to a fixed number of significant digits (the 
mantissa) and scaled using an exponent. The base for the 
scaling is normally 2, 10 or 16. The typical number that can be 
represented exactly is of the form: 
 
Significant digits × base exponent     

 
 

Fig3. IEEE 754 Floating point number representation. Here w, 
we and wf represents total width, exponent width and fraction 

width respectively 

Floating point representation with its exponent component 
achieves greater range compared to conventional fixed point 
representation. For example, consider IEEE 754 floating point 
format [12] number with 32 bit single precision, implemented 
as 23 bit mantissa (or fraction, f), 8-bit exponent(e) and sign 
bit(s) described in Fig-3. The 24 bit mantissa (including sign 
bit) can achieve a precision of 16M (224) compared to the 6K 
(216) of fixed point format. The remaining 8-bit exponent 
offers enormously larger dynamic range (in the order of 264), 
compared with the fixed-point format. 
 
The LMS algorithm with a behavioral model using fixed point 
packages is described in our paper [13]. But a structural model 
system design is preferred since it takes into account the 
efficiency with which FPGA resources can be configured and 
interconnected to achieve the desired functionality. Hence a 
structural model with FSM is developed to explore the parallel 
processing capabilities of FPGA & this is depicted in the 
coming chapters. 
 
3.2 Structural Model with FSM.  

The LMS algorithm with structural modeling decomposes the 
system into smaller modules each with unique functionalities. 
These modules are synthesizable on the hardware using basic 
functional elements such as Look-up Tables and Gates. These 
modules are paralleley executable and reusable. The FSM 
methodology is used to interconnect these individual modules 
and synchronize their operation in the most efficient way. The 
FSM design is based on mealy model in which output value 
depends both on the present state and the input.   
 

 
 

Fig4. FSM diagram of an adaptive filter 
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The Fig-4 shows the FSM model developed for implementing 
LMS algorithm on FPGA Hardware in VHDL. The LMS 
algorithm is divided into 9 states. 
 
One of the main problems faced during design and 
implementation of such a modular structure was the 
synchronization of data reading from the buffers along with 
FIR or weight updation operations. The design becomes all the 
more complex since the input buffer is circular. So a FSM 
with Data path model is chosen as a solution to this problem.  
 

 
 

Fig5. LMS adaptive Filter Functional diagram 
 
The FSM with Data path model divides the system design into 
two parts, a control part (or controller) and an operative part 
(or data path). The system functionalities such as address 
generation of input circular buffer/ adaptive filter coefficient 
buffer, FIR filter output calculation, Weight updation, saving 
of input and output data in register or memory, and acquiring 
input and sending out filter output samples are implemented as 
separate data path modules. The data path unit is implemented 

with the idea of pre-computing the output values at least half a 
clock cycle before they are required. The data path modules 
are invoked either at rising or falling edge of the clock such 
that its output can be synchronized with other processes or the 
state machine. The data flow of these pre-computed values in 
between different processes or process to memory or I/O units 
is controlled with respect to each of the FSM state. The FSM 
controller implements FSM with a control unit which 
generates control signals to activate the different operations in 
specific states. These modules are implemented   on the FPGA 
using components such as multipliers, adders, incrementers 
and multiplexers. 
 
Fig-5 shows detailed functional diagram of LMS module. This 
shows the transfer of data among various storage units 
(registers) along with various operations done in the system. 
W represents adaptive filter coefficient buffer and X 
represents input samples buffer. Data paths are shown as block 
arrows, and the control signals are shown as lines. + represents 
addition and * represents multiplication. Fixed and floating 
point implementation differs only on the data path and the data 
operation modules. The address generation for input and 
adaptive filter buffers is the same. The address generation for 
input and weight buffer, read and write operations are 
synchronized with the control signals from the FSM states. 
The address generation modules either reset each of these 
addresses or do next address calculation with FSM state. The 
memory address updation is parallelly done for FIR and 
weight updation modules. The RTL schematic for address 
generation module is shown in Fig-6. 
 

 
 

Fig6. Address generation module 
 
3.3 Fixed Point Implementation 

LMS algorithm is implemented in FPGA hardware using 
VHDL with fixed point packages. The usage and other details 
are available in ref [14]. The implementation uses signed fixed 
point (sfixed) data type with 16 integer bits and 16 bits for 
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fraction (as shown in Fig-2). The mathematical operations 
such as multiplication, addition, type conversion and resize 
(rounding of the results) are defined in the package. The 
adaptive filter buffer W and the input circular buffer X with a 
buffer size N are implemented using LUT’s in FPGA.  
 
The arrival of new input sample triggers the FSM from idle to 
new_data state. Data is converted to sfixed data type. The data 
is saved in the input circular buffer in x_store state and 
acknowledged. The FIR state initiates the MAC (multiply and 
accumulate) operation which calculates output in N clock 
cycles. Each MAC result is rounded off to the sfixed data 
type. For that, input sample x (n-k) and filter coefficient w (k) 
are read parallelly from corresponding buffers. FIR output is 
sent out at data_out state. The error calculation and mu*err 
multiplication are done in new_err state. The weight updation 
operation is implemented in three states. New weight value is 
calculated (with rounding off the result) in the wt_calc state, 
updated weight value is stored in the wt_delay1 state and in 
the wt_delay2 state, and next address is generated.  Input and 
filter coefficients are read parallelly. Weight updation process 
requires 3*N clock cycles. So the LMS algorithm can be 
implemented in 9 individual states with 5+4N clock cycles. 
 
3.4 Floating Point Implementation 

3.4.1 IP Cores 

IP cores are pre-made engineering blocks with a reusable unit 
of logic, cell, or chip layout design which can be integrated to 
create large System-On-a-Chip (SOC) designs. IP Core 
designs are available with specifications such as area, size, 
electrical characteristics, and even the silicon process. IP cores 
can be used as building blocks within ASIC chip designs or 
FPGA logic designs. Incorporating IP cores into design 
accelerates the development cycles in today’s time-to-market 
challenges. The reuse of the verified existing blocks improves 
design efficiency and also removes the need to go for a new 
design. 
 
The LMS algorithm is implemented using Floating point IP 
Cores [15] for math-oriented operations and Block RAM 
(Random Access Memory) Memory Generator Cores for 
storage of coefficients [16]. Data is represented with IEEE 754 
floating point format throughout the implementation. DSP48 
slices are extensively used for all math oriented operations.  
The cores are configured to get response within a single clock 
cycle and are included in the Data path of the FSM. The FSM 
(in Fig-4) is re-designed to generate control signals to reset, 
clear, and enable add, multiply and divide operations of the 
floating point cores and also to generate enable and write 
enable signals for the Block RAM modules. The 
multiplication IP Core is set with maximum usage i.e. 5 
DSP48 slices and addition/subtraction core is set with Full 
usage (4 DSP48 slices).  

The incoming input sample is converted to IEEE 754 single 
precision (32-bit) floating point format before operation and 
the floating point output is converted to fixed point before 
sending out. FIR MAC Operation is implemented in two clock 
cycles (multiplication of input coefficient with the filter 
weight is initiated in FIR state and in fir_delay state; the result 
is added with the previous sum). Another two states (err_calc 
and mu_err_mult), are included in the state machine 
multiplying mu with err (µ*e(n)). Weight updation is carried 
out in three clock cycles, (µ*e(n)) is multiplied with x(n) in 
wt_calc state, multiplied result is added with w(n) in 
wt_delay1 state and the updated weight value is stored  in 
weight buffer in the wt_delay2 state . The Functional Diagram 
is same as in the Fig-5 but the math operations are done using 
floating point cores and memory is replaced with RAM Blocks 
available in the FPGA. 
 

 
 

Fig7. Floating point IP core with resource sharing 
 
The VHDL design is optimized by reusing the same floating 
point cores in FIR and weight updation operation (for 
multiplication and addition). This is achieved by the structural 
model implementation. The input to multiplication and 
addition IP cores are not connected from the registers/memory 
directly, instead, selected between two input signals using a 
mux on the basis of the state machine control signal. For 
example, the floating point multiplier inputs are configured as 
x(n) and w(n) for FIR operation, but x(n) and e(n) for weight 
updation operation. Similarly, the floating point adder inputs 
are configured as previous sum (sum in Fig-5) and current  
multiplier output (i.e, x(n)*w(n) product) for implementing 
FIR, but w(n) and the multiplier output (i.e, the product of 
x(n)  and e(n)), for weight updation operation. The output is 
also redirected accordingly. This is clearly shown in Fig-7. By 
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this method, a significant reduction in number of DSP48 slices 
is obtained. FIR requires 2*N and weight updation requires 
3*N clock cycles and the algorithm implemented totally 
requires 7+5*N clock cycles. 
 
4. RESULTS AND DISCUSSIONS  

4.1 Simulation Using ISIM 

LMS adaptive filter has been implemented in VHDL using 
Xilinx IP cores using the Xilinx ISE (Integrated Software 
Environment) tool 12.4 Version and it has been simulated on 
Xilinx ISIM (ISE Simulator).  Timing corrections and 
sequencing of modules w.r.t. FSM states has been verified by 
simulating with ISIM. The convergence characteristics with 
different mu value can be studied with ISIM results based on 
the mean square error. 
 

 
 

Fig-8 Convergence characteristics with different Mu value 
(values are taken to MATLAB and plotted). Here BUF is the 

adaptive filter Buffer Size. 
 
Fig-8 shows the convergence rate of fixed point and floating 
point implementation with buffer size16 for mu values 0.1 and 
0.05. The floating point representation enables greater 
accuracy, faster convergence compared to fixed point. 
Moreover, the minimum mean square error with floating point 
is more precise (up to 0.001), compared to fixed point (up to 
0.01). That is, floating point implementation can minimize the 
residual error which appears with the fixed point 
implementation (which is not desired in active vibration 
control systems) by 90%.  
 
 
 
 

Chart -1: Profiling result for Fixed and Floating point with a 
Buffer Size 16. Here FXP and FLP represent fixed point and 

floating point respectively 
 

 
 
Chart -1 show the no. of clock cycles used for each individual 
process in LMS for a Buffer size 16. The performance speed 
characteristic with respect to the buffer size is shown in chart-
2. 
 

Chart -2: Speed of performance with respect to Buffer size. 
Here FXP and FLP represent fixed point and floating point 

respectively 
 

 
 
From these two diagrams we can infer that floating point 
implementation of LMS algorithm is almost matching in speed 
with the fixed point implementation.  
 
4.2 Implementing on Xilinx Virtex-4 FPGA Board  

The LMS algorithm has been tested on Virtex-4 (XC4VSX55) 
FPGA board. The board is interfaced with AD5553 14-bit 
DAC (Digital to Analog Converter)  having an output analog 
voltage range of +/-10V and AD7951 14-bit Successive 
Approximation register architecture based ADC (Analog to 
Digital Converter)  with input voltage range of +/10V. The 
ADC/DAC sampling frequency is set up to 600 KHz. An input 
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sine wave from a function generator is fed to the FPGA board 
through ADC and the same is taken as the desired signal. 
Once the filter output is converged to the desired signal, the 
error minimizes to zero.  
 

 
Fig-9 LMS algorithm on Virtex-4 FPGA Board

 
Fig-9 shows the oscilloscope waveforms and the residual error 
in fixed point implementation is higher compared to that of 
floating point implementation. 
 
The percentage of resource utilization of fixed point and 
floating point implementations (including the ADC
modules) with respect to total available in the Virtex
board is shown as bar chart below (Chart
speed and the throughput can be improved by increasing the 
level of parallelism and pipelining but with the cost of more 
number of of resources. However this method is chosen by 
considering the fact that there should be enough resources 
available to extend this work as a single or multi channel 
active vibration control system. 
 

Chart -3: Percentage of resource utilization in fixed and 
floating point implementation for a filter tap length 16. Here 

FXP and FLP represent fixed point and floating point 
respectively. 
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The Virtex-4 FPGA board has a clock frequency of 40 MHz, 
which is also the clock source to the ADC/DAC. The 
ADC/DAC processing time is set to 64 clock cycles, that is, 
each sample processing can take a time up to 1.6 micro 
seconds. Now the FSM implementation with fixed point takes 
5+4N clock cycles as sample processing time and with 
floating point IP cores it takes 7+5N clock 
Calculations show that a direct implementation with a filter 
tap length up to 8 is possible in both of these cases. If the filter 
buffer size is more than 8, the 
automatically up sample the input signal and down samp
output signal in order to meet the timing.(The tap weights are 
to be set as the powers of 2, 
 
The floating point implementation uses 18 DSP48 slices 
(5x2=10 for multiplication, 4 each for addition and 
subtraction, fir and weight 
whereas fixed point implementation uses only 10 slices. Both 
the designs use 3 to 4 BUFG’s. No. of LUT’s used as Route
thru in fixed point implementation depends on Buffer size 
since Memory Buffers are implemented through LUT’
average fan-out (which is a measurement of power utilization 
in FPGA) in case of floating point implementation is almost 
constant but in fixed point design, it is comparatively more, 
and also varies with Buffer Size.
 

 
Fig10. Top level RTL schematic of LMS filter implementation
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4 FPGA board has a clock frequency of 40 MHz, 
which is also the clock source to the ADC/DAC. The 

ing time is set to 64 clock cycles, that is, 
each sample processing can take a time up to 1.6 micro 
seconds. Now the FSM implementation with fixed point takes 
5+4N clock cycles as sample processing time and with 
floating point IP cores it takes 7+5N clock cycles. 
Calculations show that a direct implementation with a filter 
tap length up to 8 is possible in both of these cases. If the filter 
buffer size is more than 8, the state machine based design will 
automatically up sample the input signal and down sample the 
output signal in order to meet the timing.(The tap weights are 
to be set as the powers of 2, i.e. 2n, n=1,2,…). 

The floating point implementation uses 18 DSP48 slices 
(5x2=10 for multiplication, 4 each for addition and 
subtraction, fir and weight updation uses the same cores) 
whereas fixed point implementation uses only 10 slices. Both 
the designs use 3 to 4 BUFG’s. No. of LUT’s used as Route-
thru in fixed point implementation depends on Buffer size 
since Memory Buffers are implemented through LUT’s. The 

out (which is a measurement of power utilization 
in FPGA) in case of floating point implementation is almost 
constant but in fixed point design, it is comparatively more, 
and also varies with Buffer Size. 

 

schematic of LMS filter implementation 
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The RTL schematic of fixed and floating point 
implementations is shown. Fig-10 shows the top level RTL 
schematic, which is same for both fixed and floating point 
implementations, Fig-11shows the detailed view of fixed point 
implementation. It shows the detailed implementation view in 
terms of slices and LUTs. Here input and coefficient buffer are 
shown in the left side. Fig-12 shows that of Floating point. It 
can be clearly depicted that IP cores are appearing as black 
boxes.  
 

 
 

Fig11. RTL schematic of fixed point LMS filter 
implementation 

 

 
 

Fig12.RTL schematic of floating point LMS filter 
implementation 

 
IP Core based design can drastically reduce the design time 
since the cores are optimized design units and in a ready to use 
state. Implementation using IP cores is more flexible in 
controlling the operation of each of the cores with enable or 
clear signals in the core and also output is indicated with the 
status signals. A better timing strategy can be achieved by 
using these features. This method also makes sharing of the 
available resources much easier. IP cores offer better 
predictability of chip performance in terms of timing, power, 
and area in the design stage itself. This helps the designers to 
manage the level of flexibility with which the design can fit 
into the FPGA architecture. 
 
CONCLUSIONS 

In this paper, LMS adaptive filter has been implemented on 
Xilinx Virtex-4 FPGA with fixed and floating point data 
representations using with Xilinx ISE V12.4. The convergence 
characteristics are studied. Floating point implementation 
results in a wide dynamic range, better level of accuracy, and 
also, the overflows are managed within the bounds of the 
hardware. 
 
It is observed that the residual error with floating point 
implementation is almost negligible. Also floating point 
implementation facilitates optimization using IP Cores. This 
leads to better resource reutilization almost on par with fixed 
point implementation. Also it takes marginally more number 
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of clock cycles, but with improved performance. Floating 
point IP Core also supports division operation which can be 
synthesized on the FPGA fabric. This facilitates Variable mu 
calculation as the next step. So floating point implementation 
is preferred for further development such as adaptive system 
Identification and control. 
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