
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 1

AN FPGA IMPLEMENTATION OF THE LMS ADAPTIVE FILTER

FOR ACTIVE VIBRATION CONTROL

Shashikala Prakash1, Renjith Kumar T.G2, Subramani H3
1 Sr. Principal Scientist, 2 Scientist Fellow, 3 Project Engineer, STTD, CSIR-NAL, Bangalore – 560017, India,

shaship@nal.res.in, renjithkumartg@gmail.com, umasubbu28@gmail.com

Abstract
This paper brings out implementation of Least Mean Square (LMS) algorithm using two different architectures. The implementations
are made on Xilinx Virtex–4 FPGA as part of realization of an Active Vibration Control system. Both fixed point and floating point
data representations are considered. A comparison between the two is brought out on the basis of a Finite State Machine (FSM)
model suitable for both fixed & floating point implementations. The floating point LMS algorithm in VHDL (Very High Speed
Integrated Circuit (VHSIC) Hardware Description Language), uses the Intellectual Property (IP) cores available from Xilinx Inc.
Results from the two architectures with respect to area as well as performance clearly shows floating point implementation to emerge
as the better option in all respects.

Index Terms: Least Mean Square Algorithm, Field programmable gate arrays (FPGA), floating point IP cores, Finite

State Machine, Active Vibration Control.

---***---------------------------- ---

1. INTRODUCTION

The Active techniques are best suited for vibration control in
Aircraft/Aerospace structures where the size, weight, volume
and cost are very crucial. Active vibration control can be
achieved on typical structures on the basis of principle of
super position theorem in which an opposite phase signal is
generated using the control software and is superimposed on
the structure in order to cancel out or suppress the effect of
primary vibrations. But the system characteristics are more
dynamic in nature, so adaptive systems are more appropriate
and efficient in performance compared to conventional
systems with fixed structure. Adaptive systems have the
ability to track changes in system parameters with respect to
time and provide optimal control over much broader range of
conditions. The LMS algorithm is a widely used technique for
adaptive filtering. The Least Mean Square algorithm is an
adaptive algorithm introduced by Widrow and Hoff in 1960[1-
5]. A reference input received / monitored using either
accelerometer or smart PZT (lead zirconate titanate) sensor is
suitably manipulated in the control filter, and the filter
response (which is a spectrum of cancellation force) is applied
in an equal and opposite direction using PZT/MFC (Macro
Fiber Composite) actuators. The Adaptive control algorithm
dynamically updates the filter coefficients based on signal
obtained from another set of error sensors. LMS algorithm is
best suited for Vibration control because of its simplicity and
also various advantages it has over other adaptive algorithms
[3]. LMS algorithm is implemented using tapped delay line
FIR (finite impulse response) filter structure, and is preferred

as it does not require matrix inversion, off-line gradient
estimations of data and also for the ease of implementation on
finite hardware.

The implementation of adaptive filter could be done using an
ASIC (Application-Specific Integrated Circuit) custom chip,
general purpose processor (GPP) or DSP processors. Though
ASIC meets all the hard constraints, it lacks the flexibility that
exists in the other two, and its design cycle is much longer
involving huge expenditure. Reconfigurable systems for
prototyping of digital system are very advantageous. Using
reconfigurable devices like FPGAs for Digital Signal
Processor (DSP) applications provides the flexibility of GPP,
DSP processors, and the high performance of dedicated
hardware using ASIC technology [6]. Modern FPGAs contain
many resources that support DSP applications such as
embedded multipliers, multiply accumulate units (MAC), and
processor cores. These resources are implemented on the
FPGA fabric and optimized for high performance and low
power consumption. Also many soft IP cores are available
from different vendors that provide a support for the basic
blocks in many DSP applications [7, 15, 16].

The FPGAs can embed more and more functionality into a
small silicon area without compromising any of the
performance parameters like speed and accuracy. FPGAs can
be viewed as a structural decomposition of an array of
configurable logic blocks integrated together to form any
complex digital systems. The programming procedure and
usage is much similar to its predecessors like microprocessor/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 2

DSP families but the dynamic-reusability and re-
configurability of its own individual hardware elements makes
it most suited for the embedded systems applications. In the
recent years FPGA systems are preferred due to their greater
flexibility and higher bandwidth, resulting from the parallel
architecture.

There have been many efforts to implement LMS algorithm in
FPGA platforms. Mohammad Bahura and Hassan Ezzaidi [8]
have presented a sequential architecture on FPGA using
Virtex-II-Pro development board and Xilinx system generator
(XSG). Here a pipelined LMS based adaptive noise
cancellation is implemented to remove power line interference
from electrocardiogram (ECG). Fixed point LMS algorithm
implementation in FPGA is described in [9] along with the
effect of word length in the expected results from the
theoretical values. An improved hardware architecture of LMS
algorithm implementation in FPGA is presented in [10] and
the performance in terms of amount of resources is compared
with a Software architecture. A FSM based LMS adaptive
filter implemented for Active Noise control systems is
described in [11].

All the above mentioned papers use fixed point number
representation. An active vibration control system, when
implemented on the finite hardware should provide precise
results in terms of accuracy and the error level should be as
minimal as possible to achieve maximum control. Floating
point representation has an edge over the fixed point
representation in this context. A comparison between the fixed
and floating point approach in terms of its implementation in
FPGA hardware has been made in terms of resource
utilization, accuracy & speed. To this end, both fixed and
floating point method based LMS implementations have been
realized using the same FSM model and the performance is
tested with respect to the FPGA resources utilized, speed of
convergence and accuracy level. In this paper the outcome of
the study is presented.

The paper is structured as follows. In Section II LMS
algorithm is briefly described. III (A) gives a review of the
number representations. III (B) gives the state machine model
which is used for fixed and floating point implementations. It
also explains how FPGA incorporates parallelism with FSM.
III (C) tells about the fixed point implementation, III (D)
describes floating point implementation with IP cores,
showing how resource re-usability is improved. Results and
discussions are given in Section (V).

2. LMS ALGORITHM

2.1 Introduction

The LMS algorithm is an adaptive algorithm using an iterative
process, in which the mean square error is minimized by the
method of steepest descent by moving in the direction of

negative gradient. The block diagram representation is shown
in Fig-1. It is simple, easy to implement in finite hardware and
it does not require complex calculations such as matrix
inversions or correlation functions. Hence it is widely used in
active vibration control of aerospace structures.

Fig1. Block diagram of an LMS adaptive filter.

The LMS Algorithm consists of three basic processes:

2.1.1 Filtering Process

The output of filter y(n) is a linear combination of input signal
X(n) and the weight vector W(n), [where X(n)={x(n),x(n-
1),x(n-2),…x(n-N-1)}, and W(n)={w(0),w(1),w(2),…w(N-1)
and N, filter length] and the output of the filter is

y (n) = X (n)*W (n) (1)
* indicates convolution operation

2.1.2 Error Estimation

Error signal, e(n) is obtained by comparing the filter output
with the desired response d(n). The aim is to make y(n) as
close as possible to d(n), thus error signal is

e(n) = d (n) – y(n) (2)

2.1.3 Adaptation Process

Mean-square error performance function f (w) is

f (w)=E{|e(n) |2} (3)

According to the least mean square criterion, the optimal filter
parameter w should minimize the error performance function
f(w). Using gradient-descent methods, the weight update
formula is

w (n+1) = w(n) + µ.e(n).x(n) (4)

Where μ is the adaptive step size parameter and it controls the
convergence characteristics of the filter.

Where

x (n) = input signal

y (n) = output signal

d (n) = desired signal

e (n) = error signal

W =Adaptive filter

x (n)

W y (n)

d (n)

e (n)

∑∑∑∑

+

-

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 3

3. FPGA IMPLEMENTATION OF LMS

ALGORITHM

3.1 Review of Number Representation

FPGA implementation is an overall process of converting a
higher level system description into a lower level
implementation in terms of signal flow through hardware
circuits, as bit streams. Data flow in the form of these streams
of bits can be represented either in fixed point or floating point
number format and arithmetic.

3.1.1 Fixed Point Number Representation

Fixed point representation assigns a fixed width to integer and
fraction. For example, for a 32 bit number can be considered
16 integer bit and 16 fractional bits (shown in Fig-2), which
can go up to the range of 216-1 to -216 (integer part i.e., 65535
to -65536) and with a fractional range of 1/216 (i.e.,
0.0000152587890625) .

Fig2. Fixed point number representation. Here w and wf
represents total width and fraction width respectively

3.1.2 Floating Point Number Representation

Floating point numbers are, in general, represented
approximately to a fixed number of significant digits (the
mantissa) and scaled using an exponent. The base for the
scaling is normally 2, 10 or 16. The typical number that can be
represented exactly is of the form:

Significant digits × base exponent

Fig3. IEEE 754 Floating point number representation. Here w,
we and wf represents total width, exponent width and fraction

width respectively

Floating point representation with its exponent component
achieves greater range compared to conventional fixed point
representation. For example, consider IEEE 754 floating point
format [12] number with 32 bit single precision, implemented
as 23 bit mantissa (or fraction, f), 8-bit exponent(e) and sign
bit(s) described in Fig-3. The 24 bit mantissa (including sign
bit) can achieve a precision of 16M (224) compared to the 6K
(216) of fixed point format. The remaining 8-bit exponent
offers enormously larger dynamic range (in the order of 264),
compared with the fixed-point format.

The LMS algorithm with a behavioral model using fixed point
packages is described in our paper [13]. But a structural model
system design is preferred since it takes into account the
efficiency with which FPGA resources can be configured and
interconnected to achieve the desired functionality. Hence a
structural model with FSM is developed to explore the parallel
processing capabilities of FPGA & this is depicted in the
coming chapters.

3.2 Structural Model with FSM.

The LMS algorithm with structural modeling decomposes the
system into smaller modules each with unique functionalities.
These modules are synthesizable on the hardware using basic
functional elements such as Look-up Tables and Gates. These
modules are paralleley executable and reusable. The FSM
methodology is used to interconnect these individual modules
and synchronize their operation in the most efficient way. The
FSM design is based on mealy model in which output value
depends both on the present state and the input.

Fig4. FSM diagram of an adaptive filter

Bit Signifi-
cance (i)

Bit
position

0

w

w-1

0 1 2 3 we-1

wf-1 wf-2
wf-1

s e f

wf-1

w

wf-1
0 wf wf-1 w-1

s Integer Fraction

Bit
 position (i)

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 4

The Fig-4 shows the FSM model developed for implementing
LMS algorithm on FPGA Hardware in VHDL. The LMS
algorithm is divided into 9 states.

One of the main problems faced during design and
implementation of such a modular structure was the
synchronization of data reading from the buffers along with
FIR or weight updation operations. The design becomes all the
more complex since the input buffer is circular. So a FSM
with Data path model is chosen as a solution to this problem.

Fig5. LMS adaptive Filter Functional diagram

The FSM with Data path model divides the system design into
two parts, a control part (or controller) and an operative part
(or data path). The system functionalities such as address
generation of input circular buffer/ adaptive filter coefficient
buffer, FIR filter output calculation, Weight updation, saving
of input and output data in register or memory, and acquiring
input and sending out filter output samples are implemented as
separate data path modules. The data path unit is implemented

with the idea of pre-computing the output values at least half a
clock cycle before they are required. The data path modules
are invoked either at rising or falling edge of the clock such
that its output can be synchronized with other processes or the
state machine. The data flow of these pre-computed values in
between different processes or process to memory or I/O units
is controlled with respect to each of the FSM state. The FSM
controller implements FSM with a control unit which
generates control signals to activate the different operations in
specific states. These modules are implemented on the FPGA
using components such as multipliers, adders, incrementers
and multiplexers.

Fig-5 shows detailed functional diagram of LMS module. This
shows the transfer of data among various storage units
(registers) along with various operations done in the system.
W represents adaptive filter coefficient buffer and X
represents input samples buffer. Data paths are shown as block
arrows, and the control signals are shown as lines. + represents
addition and * represents multiplication. Fixed and floating
point implementation differs only on the data path and the data
operation modules. The address generation for input and
adaptive filter buffers is the same. The address generation for
input and weight buffer, read and write operations are
synchronized with the control signals from the FSM states.
The address generation modules either reset each of these
addresses or do next address calculation with FSM state. The
memory address updation is parallelly done for FIR and
weight updation modules. The RTL schematic for address
generation module is shown in Fig-6.

Fig6. Address generation module

3.3 Fixed Point Implementation

LMS algorithm is implemented in FPGA hardware using
VHDL with fixed point packages. The usage and other details
are available in ref [14]. The implementation uses signed fixed
point (sfixed) data type with 16 integer bits and 16 bits for

FSM
controll

er

X

x(n)

d(n)

*

y(n)

e(n)
-

mu

W

+
*

*

 FIR

Weight updation

+

xin

count_rst

out_reg

err

sum

x_circaddr

x_addr

w_addr

addr_calc

addr_calc

addr_calc

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 5

fraction (as shown in Fig-2). The mathematical operations
such as multiplication, addition, type conversion and resize
(rounding of the results) are defined in the package. The
adaptive filter buffer W and the input circular buffer X with a
buffer size N are implemented using LUT’s in FPGA.

The arrival of new input sample triggers the FSM from idle to
new_data state. Data is converted to sfixed data type. The data
is saved in the input circular buffer in x_store state and
acknowledged. The FIR state initiates the MAC (multiply and
accumulate) operation which calculates output in N clock
cycles. Each MAC result is rounded off to the sfixed data
type. For that, input sample x (n-k) and filter coefficient w (k)
are read parallelly from corresponding buffers. FIR output is
sent out at data_out state. The error calculation and mu*err
multiplication are done in new_err state. The weight updation
operation is implemented in three states. New weight value is
calculated (with rounding off the result) in the wt_calc state,
updated weight value is stored in the wt_delay1 state and in
the wt_delay2 state, and next address is generated. Input and
filter coefficients are read parallelly. Weight updation process
requires 3*N clock cycles. So the LMS algorithm can be
implemented in 9 individual states with 5+4N clock cycles.

3.4 Floating Point Implementation

3.4.1 IP Cores

IP cores are pre-made engineering blocks with a reusable unit
of logic, cell, or chip layout design which can be integrated to
create large System-On-a-Chip (SOC) designs. IP Core
designs are available with specifications such as area, size,
electrical characteristics, and even the silicon process. IP cores
can be used as building blocks within ASIC chip designs or
FPGA logic designs. Incorporating IP cores into design
accelerates the development cycles in today’s time-to-market
challenges. The reuse of the verified existing blocks improves
design efficiency and also removes the need to go for a new
design.

The LMS algorithm is implemented using Floating point IP
Cores [15] for math-oriented operations and Block RAM
(Random Access Memory) Memory Generator Cores for
storage of coefficients [16]. Data is represented with IEEE 754
floating point format throughout the implementation. DSP48
slices are extensively used for all math oriented operations.
The cores are configured to get response within a single clock
cycle and are included in the Data path of the FSM. The FSM
(in Fig-4) is re-designed to generate control signals to reset,
clear, and enable add, multiply and divide operations of the
floating point cores and also to generate enable and write
enable signals for the Block RAM modules. The
multiplication IP Core is set with maximum usage i.e. 5
DSP48 slices and addition/subtraction core is set with Full
usage (4 DSP48 slices).

The incoming input sample is converted to IEEE 754 single
precision (32-bit) floating point format before operation and
the floating point output is converted to fixed point before
sending out. FIR MAC Operation is implemented in two clock
cycles (multiplication of input coefficient with the filter
weight is initiated in FIR state and in fir_delay state; the result
is added with the previous sum). Another two states (err_calc
and mu_err_mult), are included in the state machine
multiplying mu with err (µ*e(n)). Weight updation is carried
out in three clock cycles, (µ*e(n)) is multiplied with x(n) in
wt_calc state, multiplied result is added with w(n) in
wt_delay1 state and the updated weight value is stored in
weight buffer in the wt_delay2 state . The Functional Diagram
is same as in the Fig-5 but the math operations are done using
floating point cores and memory is replaced with RAM Blocks
available in the FPGA.

Fig7. Floating point IP core with resource sharing

The VHDL design is optimized by reusing the same floating
point cores in FIR and weight updation operation (for
multiplication and addition). This is achieved by the structural
model implementation. The input to multiplication and
addition IP cores are not connected from the registers/memory
directly, instead, selected between two input signals using a
mux on the basis of the state machine control signal. For
example, the floating point multiplier inputs are configured as
x(n) and w(n) for FIR operation, but x(n) and e(n) for weight
updation operation. Similarly, the floating point adder inputs
are configured as previous sum (sum in Fig-5) and current
multiplier output (i.e, x(n)*w(n) product) for implementing
FIR, but w(n) and the multiplier output (i.e, the product of
x(n) and e(n)), for weight updation operation. The output is
also redirected accordingly. This is clearly shown in Fig-7. By

FSM

controller
X

x(n)

mu

W

+

*

*

err

sum
0

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 6

this method, a significant reduction in number of DSP48 slices
is obtained. FIR requires 2*N and weight updation requires
3*N clock cycles and the algorithm implemented totally
requires 7+5*N clock cycles.

4. RESULTS AND DISCUSSIONS

4.1 Simulation Using ISIM

LMS adaptive filter has been implemented in VHDL using
Xilinx IP cores using the Xilinx ISE (Integrated Software
Environment) tool 12.4 Version and it has been simulated on
Xilinx ISIM (ISE Simulator). Timing corrections and
sequencing of modules w.r.t. FSM states has been verified by
simulating with ISIM. The convergence characteristics with
different mu value can be studied with ISIM results based on
the mean square error.

Fig-8 Convergence characteristics with different Mu value
(values are taken to MATLAB and plotted). Here BUF is the

adaptive filter Buffer Size.

Fig-8 shows the convergence rate of fixed point and floating
point implementation with buffer size16 for mu values 0.1 and
0.05. The floating point representation enables greater
accuracy, faster convergence compared to fixed point.
Moreover, the minimum mean square error with floating point
is more precise (up to 0.001), compared to fixed point (up to
0.01). That is, floating point implementation can minimize the
residual error which appears with the fixed point
implementation (which is not desired in active vibration
control systems) by 90%.

Chart -1: Profiling result for Fixed and Floating point with a
Buffer Size 16. Here FXP and FLP represent fixed point and

floating point respectively

Chart -1 show the no. of clock cycles used for each individual
process in LMS for a Buffer size 16. The performance speed
characteristic with respect to the buffer size is shown in chart-
2.

Chart -2: Speed of performance with respect to Buffer size.
Here FXP and FLP represent fixed point and floating point

respectively

From these two diagrams we can infer that floating point
implementation of LMS algorithm is almost matching in speed
with the fixed point implementation.

4.2 Implementing on Xilinx Virtex-4 FPGA Board

The LMS algorithm has been tested on Virtex-4 (XC4VSX55)
FPGA board. The board is interfaced with AD5553 14-bit
DAC (Digital to Analog Converter) having an output analog
voltage range of +/-10V and AD7951 14-bit Successive
Approximation register architecture based ADC (Analog to
Digital Converter) with input voltage range of +/10V. The
ADC/DAC sampling frequency is set up to 600 KHz. An input

0 10 20 30 40 50 60

weight updation

error estimation

FIR

Initialization

Clock Cycles

BUF 16 FXP BUF 16 FLP

0

200

400

600

800

1000

1200

1400

8 16 32 64 128 256

cl
oc

k
cy

cl
es

Buffer Size

FLP

FXP

IJRET: International Journal of Research in Engineering and Technology

__

Volume: 02 Issue: 10 | Oct-2013, Available @

sine wave from a function generator is fed to the FPGA board
through ADC and the same is taken as the desired signal.
Once the filter output is converged to the desired signal, the
error minimizes to zero.

Fig-9 LMS algorithm on Virtex-4 FPGA Board

Fig-9 shows the oscilloscope waveforms and the residual error
in fixed point implementation is higher compared to that of
floating point implementation.

The percentage of resource utilization of fixed point and
floating point implementations (including the ADC
modules) with respect to total available in the Virtex
board is shown as bar chart below (Chart
speed and the throughput can be improved by increasing the
level of parallelism and pipelining but with the cost of more
number of of resources. However this method is chosen by
considering the fact that there should be enough resources
available to extend this work as a single or multi channel
active vibration control system.

Chart -3: Percentage of resource utilization in fixed and
floating point implementation for a filter tap length 16. Here

FXP and FLP represent fixed point and floating point
respectively.

1%

2%

3%

2%

9%

1%

1%

3%

3%

3%

9%

3%

Slice Registers

4 input LUTs

Occupied Slices

4 input LUTs(total)

Bonded IOBs

BUFG/ BUFGCTRLs

DSP48 slices

Resource utilization

BUF16 FLP

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319

__

2013, Available @ http://www.ijret.org

sine wave from a function generator is fed to the FPGA board
DC and the same is taken as the desired signal.

Once the filter output is converged to the desired signal, the

4 FPGA Board

shows the oscilloscope waveforms and the residual error
in fixed point implementation is higher compared to that of

The percentage of resource utilization of fixed point and
floating point implementations (including the ADC/DAC
modules) with respect to total available in the Virtex-4 FPGA

Chart-3). Performance
speed and the throughput can be improved by increasing the
level of parallelism and pipelining but with the cost of more

f resources. However this method is chosen by
considering the fact that there should be enough resources
available to extend this work as a single or multi channel

Percentage of resource utilization in fixed and
floating point implementation for a filter tap length 16. Here

FXP and FLP represent fixed point and floating point

The Virtex-4 FPGA board has a clock frequency of 40 MHz,
which is also the clock source to the ADC/DAC. The
ADC/DAC processing time is set to 64 clock cycles, that is,
each sample processing can take a time up to 1.6 micro
seconds. Now the FSM implementation with fixed point takes
5+4N clock cycles as sample processing time and with
floating point IP cores it takes 7+5N clock
Calculations show that a direct implementation with a filter
tap length up to 8 is possible in both of these cases. If the filter
buffer size is more than 8, the
automatically up sample the input signal and down samp
output signal in order to meet the timing.(The tap weights are
to be set as the powers of 2,

The floating point implementation uses 18 DSP48 slices
(5x2=10 for multiplication, 4 each for addition and
subtraction, fir and weight
whereas fixed point implementation uses only 10 slices. Both
the designs use 3 to 4 BUFG’s. No. of LUT’s used as Route
thru in fixed point implementation depends on Buffer size
since Memory Buffers are implemented through LUT’
average fan-out (which is a measurement of power utilization
in FPGA) in case of floating point implementation is almost
constant but in fixed point design, it is comparatively more,
and also varies with Buffer Size.

Fig10. Top level RTL schematic of LMS filter implementation

14%

9%

14%

9%

BUF16FXP

eISSN: 2319-1163 | pISSN: 2321-7308

__

 7

4 FPGA board has a clock frequency of 40 MHz,
which is also the clock source to the ADC/DAC. The

ing time is set to 64 clock cycles, that is,
each sample processing can take a time up to 1.6 micro
seconds. Now the FSM implementation with fixed point takes
5+4N clock cycles as sample processing time and with
floating point IP cores it takes 7+5N clock cycles.
Calculations show that a direct implementation with a filter
tap length up to 8 is possible in both of these cases. If the filter
buffer size is more than 8, the state machine based design will
automatically up sample the input signal and down sample the
output signal in order to meet the timing.(The tap weights are
to be set as the powers of 2, i.e. 2n, n=1,2,…).

The floating point implementation uses 18 DSP48 slices
(5x2=10 for multiplication, 4 each for addition and
subtraction, fir and weight updation uses the same cores)
whereas fixed point implementation uses only 10 slices. Both
the designs use 3 to 4 BUFG’s. No. of LUT’s used as Route-
thru in fixed point implementation depends on Buffer size
since Memory Buffers are implemented through LUT’s. The

out (which is a measurement of power utilization
in FPGA) in case of floating point implementation is almost
constant but in fixed point design, it is comparatively more,
and also varies with Buffer Size.

schematic of LMS filter implementation

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 8

The RTL schematic of fixed and floating point
implementations is shown. Fig-10 shows the top level RTL
schematic, which is same for both fixed and floating point
implementations, Fig-11shows the detailed view of fixed point
implementation. It shows the detailed implementation view in
terms of slices and LUTs. Here input and coefficient buffer are
shown in the left side. Fig-12 shows that of Floating point. It
can be clearly depicted that IP cores are appearing as black
boxes.

Fig11. RTL schematic of fixed point LMS filter
implementation

Fig12.RTL schematic of floating point LMS filter
implementation

IP Core based design can drastically reduce the design time
since the cores are optimized design units and in a ready to use
state. Implementation using IP cores is more flexible in
controlling the operation of each of the cores with enable or
clear signals in the core and also output is indicated with the
status signals. A better timing strategy can be achieved by
using these features. This method also makes sharing of the
available resources much easier. IP cores offer better
predictability of chip performance in terms of timing, power,
and area in the design stage itself. This helps the designers to
manage the level of flexibility with which the design can fit
into the FPGA architecture.

CONCLUSIONS

In this paper, LMS adaptive filter has been implemented on
Xilinx Virtex-4 FPGA with fixed and floating point data
representations using with Xilinx ISE V12.4. The convergence
characteristics are studied. Floating point implementation
results in a wide dynamic range, better level of accuracy, and
also, the overflows are managed within the bounds of the
hardware.

It is observed that the residual error with floating point
implementation is almost negligible. Also floating point
implementation facilitates optimization using IP Cores. This
leads to better resource reutilization almost on par with fixed
point implementation. Also it takes marginally more number

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 9

of clock cycles, but with improved performance. Floating
point IP Core also supports division operation which can be
synthesized on the FPGA fabric. This facilitates Variable mu
calculation as the next step. So floating point implementation
is preferred for further development such as adaptive system
Identification and control.

ACKNOWLEDGEMENTS

The authors would like to thank CSIR-NAL for supporting the
work. Also thanks are due to Director, NAL and Head, STTD
for giving us the opportunity to carry out the work at NAL.

REFERENCES

[1] B. Widrow, S.D.Stearns, Adaptive Signal Processing,
Prentice-Hall, Englewood Cliffs, N.J., 1985.

[2] K. J. Astrum, B. Witenmark, Adaptive Control,
Addison-Wesley Publishing Company, 1995.

[3] Sen M.Kuo, Dennis R.Morgan, Active Noise Control
Systems – Algorithms and DSP Implementations, John
Wileyand Sons, inc 1996.

[4] John R. Treichler, C. Richard Johnson, Michael G.
Larimore, Theory and Design of Adaptive Filters, John
Wiley and Sons 1987

[5] S. Haykin, Adaptive Filter Theory, Fourth Edition,
Prentice Hall, Upper Saddle River, N.J., 2002

[6] Uwe Meyer-Baese, Digital Signal Processing with
Field Programmable Gate Arrays. Springer-Verlag, 2nd
edition 2004

[7] Xilinx inc., MicroBlaze Processor Reference Guide
Embedded Development Kit for EDK 14.1, April 2012

[8] M. Bahoura , H.Ezzaidi, FPGA-Implementation of a
Sequential Adaptive Noise Canceller Using Xilinx
System Generator, Inter. Conf. On Microelectronics -
Icm, Marrakech, (2009), 213-216

[9] Zheng-Weihu, Zhi-Yuanxie (2009), Modification of
Theoretical Fixed-Point LMS Algorithm for
Implementation in Hardware, Commerce And Security,
2009. ISECS '09. Second International Symposium On
Volume: 2 Digital Object Identifier: 10.1
109/Isecs.2009.40, Page(S): 174 – 178

[10] A. Elhossini, S. Areibi, R. Dony, An FPGA
Implementation of the LMS Adaptive Filter for Audio
Processing, Reconfig, Pp.1-8, 2006 IEEE International
Conference on Reconfigurable Computing And FPGA's
(Reconfig 2006), 2006

[11] Wolfgang Fohl,,Jörn Matthies, Bernd Schwarz, A
FPGA-Based Adaptive Noise Cancelling System, Proc.
of the 12th Int. Conference On Digital Audio Effects
(Dafx-09), Como, Italy, September 1-4, 2009

[12] ANSI/IEEE, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985.IEEE-754.

[13] Spoorthi Shekar, Shashikala Prakash, C Gurudasnayak,
Renjith Kumar, Ravikiran P.G. Implementation of LMS
Adaptive Filter on Virtex-4 FPGA Platform in VHDL.,

The Fourth National Conference on Information
Sciences (NCIS-2012) April 27-28, 2012 Manipal
Centre for Information Science (MCIS), Manipal,
Karnataka, India

[14] Fixed point package user’s guide, David Bishop
www.vhdl.org/fphdl/Fixed_ug.pdf

[15] Xilinx LogiCORE IP Floating-Point Operatorv5.0 Data
sheet, ds335.pdf www.xilinx.com/

[16] Xilinx LogiCORE IP Block Memory Generator v4.3
data sheet, ds512.pdf www.xilinx.com/4

BIOGRAPHIES

Shashikala Prakash was born in Bangalore,
Karnataka, India, in 1956. She received the
B.E. & M. E. Degrees in Electronics
Engineering from University Visveswaraya
College of Engineering, Bangalore in 1978
& 1998 respectively.

From 1980 to 2006, she has been with National aerospace
Laboratories in various capacities starting as Junior Scientific
Assistant. Since 2006, she has been a Senior Principal scientist
handling many projects inactive control involving
Microprocessors, DSPs & FPGAs using Smart materials. She
has 49 internal publications, 12 National conference papers &
12 International Conference papers including 34 journal
publications. She has presented papers in International
conferences held at Italy (1989), Sweden (2006) & China
(2009). Her research interests include Vibration and its control
using smart materials, Real Time Active Vibration Control
using Adaptive filters on DSP, FPGA, Microcontrollers,
Wireless sensor Networks etc.

Ms. Shashikala Prakash has also contributed in Ground
Vibration Testing of full scale aircrafts, Scaled models and
also Vibration testing & analysis of various aircraft/aerospace
structures. She was the recipient of the CSIR NAL BEST
WOMAN SCIENTIST AWARD for the year 2002. She is
professional member of AeSI, ISAMPE & life member of
ISSS.

Renjith Kumar T.G. was born in Alappuzha,
Kerala, India, in 1979. He received his M.Sc.
& M.Tech. Degrees in Electronics from Cochin
University of Science and Technology, Kochi
in 2003 and 2010 respectively

From 2011 onwards, He has been working as a Scientist
Fellow in National Aerospace Laboratories Bangalore. He has
one International Conference paper and two National level
conference presentations. His research areas include Real
Time Active Vibration Control, Adaptive filters, Digital
Signal Processing, FPGA, Robotics, Neural Networks,
Microcontrollers and Embedded systems.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org 10

Subramani H was born in Kunigal, Karnataka,
India 1987. He obtained B.E. in Electronics and
Communication Engineering from University
Visveswaraya College of Engg, Gubbi in 2010.

Subramani Worked as a Project Engineer during 2012 - 13 in
National Aerospace Laboratories, Bangalore before joining as
a Hardware Engineer in Dexcel Electronics Designs PVT Ltd
in Bengaluru. His areas of research interests include Real
Time Active Vibration Control, Adaptive filters, Digital
Signal Processing, FPGA, Microcontrollers and Embedded
systems.

