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Abstract 

In this work, automatic detection and diagnosis of gear condition monitoring technique is presented. The vibration signals in time 
domain wereobtained from a fault simulator apparatus from a healthy gear and an induced faulty gear. These time domain signals 
were processed using Laplace and Morlet wavelet based enveloped power spectrum to detect the faults in gears. The vibration signals 
obtained were filtered to enhance the signal components before the application of wavelet analysis. The time and frequency domain 
features extracted from Laplace wavelet based wavelet transform are used as input to ANN for gear fault classification. Genetic 
algorithm was used to optimize the wavelet and ANN classification parameters. The result shows the successful classification of ANN 
test process. 
 
Index Terms:Continuous wavelet transform, Envelope power spectrum, Wavelet, Filtering, ANN. 

-----------------------------------------------------------------------***---------------------------- ------------------------------------------- 

1. INTRODUCTION 

Gears are commonly used component for the transmission of 
mechanical power and variation of speed in machines. The 
condition monitoring of the machine with a reliable system 
can identify the fault at an early stage in order to avoid any 
failure in the machines [1]. Gear failure is one of the most 
common failures in the rotating machines which lead to 
economic losses. Therefore it is very important to detect gear 
failure [2, 3]. 
 
The defects which are usually found in gear box includes the 
presence of crack in one or more of the gear tooth, chipping of 
teeth, geometrical imperfection etc. Vibration based condition 
monitoring techniques is commonly used for the fault 
detection and diagnosis in mechanical components like gears, 
bearings etc.[4,5].Vibration signals are analysed using 
different techniques such as time domain, frequency domain 
and time–frequency domain techniques [6-8]. The impact 
produced by the faulty gear may result in non-stationary 
signal, which contain abundant information about faults; 
therefore, it is important to analyze the non-stationary signals.  
The non-stationary nature of the signal suggests the use of 
time-frequency techniques, which make it possible to look at 
the time evolution of the signal’s frequency content [9, 10].  
 
FFT based condition monitoring techniques are not suitable 
for non-stationary signal, which assumes the analyzed signal 
to be strictly periodic [11].The non-stationary nature in the 
signal can be analyzed by the wavelet transform (WT), which 
provides powerful multi resolution analysis in both time and 
frequency domains. The time and frequency analysis of 

signals makes the WT as a favored tool to extract the transient 
features of non-stationary vibrations signals compared to fast 
Fourier transform spectrum [12-14].Wavelet coefficients, 
which are obtained by the wavelet analysis indicate the 
correlation of the signal with the particular wavelet. In order to 
extract the fault features of the signal appropriate wavelet base 
function should be selected. 
 
 Laplace wavelet is a complex, single sided damped 
exponential formulated as an impulse response of a single 
mode system to be similar to data features commonly 
encountered in health monitoring tasks. It has been applied to 
the vibration analysis of an aircraft for aerodynamic and 
structural testing [15] and to diagnose the wear of the intake 
valve of an internal combustion engine [16]. Kurtosis is 
defined as the fourth central cumulant divided by the square of 
the variance of the probability distribution [17]. A high 
kurtosis values indicates high impulsive content of the signal 
with more sharpness in the signal intensity distribution, based 
on maximum kurtosis concept, the fault detection is enhanced, 
by optimizing the wavelet features [18-20].  
 
A neural network is a massively parallel distributed processor 
that has a natural tendency for storing knowledge and making 
it available for use. Artificial neural network (ANN) is a type 
of artificial intelligence, which has nonlinear information 
processing devices, built from interconnected elementary 
processing devices called neurons. Among all kinds of 
intelligent diagnosis methods, pattern recognition based on an 
Artificial Neural Network (ANN) has been widely used 
because of its power in self- organizing, unsupervised-
learning, and nonlinear pattern classification [21].The artificial 
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neuron receives signals analogous to the natural electro-
chemical signals. The way information is processed and 
intelligence is stored depends on the architecture and 
algorithms of ANN. 
 
Expert system and artificial intelligence are playing significant 
role in automated fault diagnosis and machine learning. 
Machine learning using the concepts of Artificial Neural 
Network (ANN) have become very popular and known for 
exploiting non-linear pattern classification properties, offering 
automatic detection and identification of gearbox fault 
conditions. It offers an advantage that they do not require an 
in-depth knowledge of the behavior of the system [22].  
 
Artificial neural network (ANN), support vector machine 
(SVM) and Fuzzy classifier are widely used as classification 
tool [23].The most popular feed forward, multi-layer 
perceptronneural network, is frequently exploited in fault 
diagnosis systems and it has found an immense popularity in 
condition monitoring applications[24]. 
 
In this paper, Wiener filter is used to enhance the fault signal 
components in the vibration signal and wavelet envelope 
power spectrum is used to detect localized gear tooth defects. 
Vibration signals were collected from the experimental setups 
with induced faults. The second part includes the application 
of wavelet analysis as a feature extraction method combined 
with the neural network classifier for automatic detection and 
diagnosis of the gear fault. 
 
This paper is organized as follows: section 2 covers theory on 
the wiener filter and wavelet transform, section 3 explains the 
experimental setups and procedure, section 4 discusses the 
implementation of the enveloped wavelet power spectrum 
forgear fault detection, section5 covers feature extraction 
method combined with ANN as classifier and the conclusions 
are presented in section 6. 
 
2. WAVELET POWER SPECTRUM 

2.1Filtering 

The filtering theory works on the concept of minimizing the 
difference between the filtered output and the desired output. 
The Filter uses the least mean square approach to minimize, 
which adjusts the filter coefficients to reduce the square of the 
difference between the desired and actual waveform after 
filtering.  
 
The concept of Wiener filter approach is represented by 
schematic diagram as depicted in Figure 1. 
Input A(n)       output B(n)          error E(n) 
          - 
    + 
   Desired Response D(n) 

 
Figure 1 

The linear process C(z) uses the concept of finite impulse 
response (FIR) filters to filter the input waveform A(n)having 
both signal and noise. 
 
The FIR filters are implemented using convolution equation  
 

B(n) =∑ ������� − ��	

��    (1) 

 
Where, the impulse response of the linear filter is represented 
by i(k). The output of the filter, B (n), can be thought of as an 
estimate of the desired signal, D (n). The difference between 
the estimate and desired signal’E (n)’ is determined by 
subtraction 
 

E(n) = D(n) − B(n). 
 
To minimize error signal‘E (n)’the least mean square 
algorithm is used. 
 
E (n) can be written as: 
 

E (n) = D (n) − B (n) = D (n) −∑ ������� − ��	

�� (2) 

 
Where M is the length of the FIR filter. In fact, it is the sum of 
E (n)2 which is to be minimized. Squaring of the elements ‘E 
(n)2 ‘leads to a quadratic function of the FIR filter coefficients, 
i(k), which contains the autocorrelation and cross correlation 
elements. 
 
In order to Minimize the error function with respect to the FIR 
filtercoefficients, take derivatives with respect to i(k) and set 
them to zero. This represents a series of Mequations that must 
be solved simultaneouslyto solve for the FIR coefficients. The 
matrix expression for these simultaneous equations is known 
as the Wiener-Hopfequation and is abasic component of 
Wiener filter theory [25]. 
 
2.2 Enveloped wavelet power spectrum 

Wavelet analysis can use different types of probing functions, 
but the family always consists of enlarged or compressed 
versions of the basic function, as well as translations. 
Mathematically, the wavelet transform of a finite energy 
signal x (t) with the analyzing waveletψ , leads to the 

definition of continuous wavelet transform as given in 
equation (3). 
 

W (a, b) = dt
a

bt

a
tx∫

∞

∞−







 −∗ψ1
)(   (3) 

 
Where, b (dilation parameter) acts to translate the function 
across x (t) and the variable a (scaling parameter) acts to vary 
the time scale of the wavelet functionψ . The ∗  indicates the 

operation of complex conjugate and the normalizing parameter 

Linear 

Filter C (z) 
∑ 
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1/ a ensures that the energy is the same for all values of a. 
The values of a stretches and contracts the wavelet function 
along the time axis. The base wavelet is generated when b=0, 
and a=1, then the wavelet is in its natural form, which is 
termed the mother wavelet. The wavelet coefficients W(a,b)  
shows the similarity between the waveform and the wavelet at 
a given combination of scale ‘a’ and position ‘b’. 
 
The envelope detection or amplitude demodulation is the 
technique of extracting the modulating signal from an 
amplitude-modulated signal. The result is the time-history of 
the modulating signal.  Envelope analysis is the FFT 
frequency spectrum of the modulating signal. The vibration 
signal of a faulty gear can be viewed as a carrier signal at a 
resonant frequency of the gear modulated by a decaying 
envelope. The goal of the enveloping approach is to replace 
the oscillation caused by each impact with a single pulse over 
the entire period of the impact.  
 
Laplace wavelet represented by equation 4 is a complex 
analytical and single sided damped exponential and the view 
of Laplace wavelet is shown in Figure 2 
 

=)(tψ  A e
ti

c
ω

β
β














+

−
− 21     t  ≥  0 

 

=)(tψ  0      t is otherwise                  (4) 

 

Where β  is the damping factor that controls the decay rate of 

the exponential envelope in the time domain and hence 
regulates the resolution of the wavelet and it simultaneously 
corresponds to the frequency bandwidth of the wavelet in the 

frequency domain. The frequency cω determines the number 

of significant oscillations of the wavelet in the time domain 
and corresponds to wavelet center frequency in the frequency 
domain and A is an arbitrary scaling factor [18]. 
 

 
(a) 

 
(b) 

 
Figure 2.Laplace wavelet (a) Real part of Laplace wavelet (b) 

Imaginary part of Laplace wavelet 
 
The optimal values of β and ωc for given vibration signal can 
be found by adjusting the time-frequency resolution of the 
Laplace wavelet to the decay rate and the frequency of the 
impulses to be extracted. A high kurtosis values indicates high 
impulsive content of the signal with more sharpness in the 
signal intensity distribution  
 
Let x (n) be a real discrete time random process, and WTaits N 
point Laplace wavelet transform at scale a. The Laplace 
Wavelet Kurtosis (LWK) for x(n) is defined as the kurtosis of 
the magnitude of WTa at each wavelet scale a as in the 
equation (5)[19]. 
 

LWK  (a)= 2

1

2

1

4

))],),((([

)),),(((

c

N

n
a

c

N

n
a

nxWTabs

nxWTabs

ωψ

ωψ

β

β

∑

∑

=

=
  (5) 

 
The objective of the Laplace wavelet shape optimization 
process is to find  wavelet shape parameters which maximize 
the Laplace wavelet kurtosis. 
 
Genetic algorithm is used to optimize the wavelet parameters. 
A genetic algorithm (GA) is computerized search and 
optimization algorithms based on the mechanics of natural 
genetics and natural selection. The principal idea of the GA is 
to search for the optimal solution in a large population.The 
basic steps involved in the genetic algorithm are shown below. 
1. [Start] Generate random populationof chromosomes 
2. [Fitness] Evaluate the fitness function of each 
chromosomein the population 
3. [New Population] Create a new population using selection, 
crossover and mutation until the new population is complete 
4. [Replace] Use new generated population for a further run of 
the algorithm 
5. [Test] If the end condition is satisfied, stop, and return the 
best solution in current population 
6. [Loop] Go to step 2 
 
In this research roulette wheel, Arith-crossover and uniform 
mutation is used to find optimum solution. 
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The scale-kurtosis distribution of the wavelet transform using 
Laplace wavelet is depicted in the Figure 3. 
 

 
 

Figure 3: Scale-Kurtosis distribution 
 

The Morlet wavelet is defined as given in equation (6)[25]. 
The view of Morlet wavelet is shown in Figure 4 
 

=)(tψ 2te− cos (
2ln

2π  t)      (6) 

 
 

Figure4. Morlet wavelet 
 

The wavelet transform (WT) of a finite energy signal x(t), 
with the mother wavelet ψ (t), is the inner product of x(t) with 

a scaled and conjugate wavelet ψ ∗ a,b. Since the analytical 

and complex wavelet is employed to calculate the wavelet 
transform, the result of the wavelet transform is also an 
analytical signal as shown in equation (7) and (8). 
 

WT{x(t),ab} =  <x(t), ψ a,b(t)> = ∫
∞

∞−

∗ dtttx
a

)(  )(
1

ba,ψ (7) 

 

= Re [WT (a, b)] + iIm [WT (a, b)] =A(a, b) e ).( baiθ  (8) 
 
Whereψ a,bis a family of daughter wavelet, defined by the 

dilation parameter a and the translation parameter b, the factor 
1/ a is used to ensure energy preservation. The time-varying 
function A(a, b) is the instantaneous envelope of the resulting 

wavelet transform (EWT) which extracts the slow time 
variation of the signal, and is given by equation (9) 
 
A (a, b) = EWT (a, b) = 22 } b)][WT(a, Im{} b)] [WT(a, Re{ + (9)  

 
For each wavelet, the inner product results in a series of 
coefficients which indicate how close the signal is to that 
particular wavelet. To extract the frequency content of the 
enveloped correlation coefficients, the wavelet-scale power 
spectrum (SWPS) (energy/unit scale) is given by equation (10) 
 

SWPS (a, ω ) = ∫
∞

∞−

ωω daSEWT
2

),(   (10) 

 
Where SEWT (a,ω ) is the Fourier transform of EWT (a,b). 
 
The total energy of the signal x (t) is given in equation (11) 
 

TWPS = ∫
2

)(tx dt   = ∫
∞

∞−

daaSWPS ),(
2

1 ω
π

 (11) 

 
3. EXPERIMENTAL SETUPS AND PROCEDURE 

OF DATA COLLECTION  

3.1Experimental Setup1 

The fault simulator setup 1consists of variable speed motor, 
single stage gear box, couplings, belt & pulleys, loading 
system, and bearings as depicted in Figure 5. The electric 
motor of capacity 0.5 HP and variable speed maximum up to 
10,000RPM is connected to one gear of the gear box through 
coupling and belt & pulleys system and the other gear is 
connected to a loading system. The gear and pinion has 30 and 
20 teeth respectively. The steel shafts of 5/8” diameter connect 
gears with motor and loading system. The shafts are supported 
through bearings. The vibration data is collected from the 
drive end bearing of gear box using the accelerometer with a 
NI Data Acquisition Device. The views of healthy and faulty 
gears are shown in Figure 6. The collected vibration data are 
exported as data file to MATLAB software for further 
processing of the signal to identify the fault.  
 
In the experimental investigation, the vibration signal was 
collected from a healthy gear at shaft speed of 900RPM under 
constant load condition. The Gear mesh frequency (GMF) is 
calculated to be 20*900/60 =300Hz.  Further faults were 
induced in two different stages as shown in Table 1 and the 
corresponding vibration readings were taken. The sampling 
frequency of 16,000 Hz was used to collect the data for 2 
seconds. The data was collected from the setup after reaching 
the required speed. 
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Figure5.Fault Simulator set up 1 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 6.Gears with induced fault in 2 stages. (a) Stage 0. (b) 

Stage 1.  (c) Stage 2. 
 

Table 1.Stages of induced fault for Fault Simulator set up 1 
 

Stage Condition of the gear Fault description 
Stage 0 Healthy gear Without any induced fault  
Stage 1 Faulty gear The chipped tooth 
Stage 2 Faulty gear Tooth was completely 

removed  
 

3.2 Experimental Setup2 

The fault simulator2 used for the experimentation to collect 
the data is shown in Figure 7. It consists of a motor, single 
stage gear box and loading system. The gearbox input side 
was connected to 0.5 HP, 2900 RPM electric motor through 
coupling and the output side was connected to a loading 
system. The gear and pinion has 46 and 23 teeth respectively. 
The shafts of 25mm diameter connect gears with motor and 
loading system. All drive shafts are supported at its ends with 
antifriction bearings. The vibration data was collected from 
the drive end bearing of gear box using the accelerometer 
(model 621B40, IMI sensors, sensitivity is 1.02 mV/m/s2 and 
frequency range up to 18 kHz) with a NI Data Acquisition 
Device. The view of the healthy gears is depicted in Figure 8. 
The vibration data collected are exported as data file to 
MATLAB software for further processing of the signal to 
identify the fault. 
 
 

 
 

Figure 7.Fault Simulator set up 2. 
 

 
 

Figure 8.View of healthy gears 
 

In the experimental investigation, the vibration signal was 
collected from a healthy gear at shaft speed of 2850 RPM 
under constant load condition. The Gear mesh frequency 
(GMF) is 23*2850/60 =1092.5Hz. Further faults are induced 
in three different stages as shown in Table 2 and the 
corresponding vibration readings were taken. The views of 
faulty gear are shown in Figure 9. The sampling frequency of 

Motor 
Gear box 

Load  

Healthy gear   
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16,000 Hz was used to collect the data for 2.4 seconds. The 
data was collected from the setup after reaching the required 
speed. 
 
Stage Condition of 

the gear 
Fault description 

Stage 0 Healthy gear Without any induced fault  

Stage 1 Faulty gear A crack of 3mm is induced at 
the root of the tooth 

Stage 2 Faulty gear Tooth was partially broken  
Stage 3  Faulty gear Tooth was completely removed  

 
Table 2: Stages of induced fault for Fault Simulator set up 2. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure9 Gears with induced fault in 3 stages. (a) Stage 1. (b) 

Stage 2.  (c) Stage 3 
 

4. IMPLEMENTING OF WAVELET POWER 

SPECTRUM 

This section presents several application examples to visualize 
the performance of the proposed approach. The proposed 
approach is applied for the detection of localized gear fault. It 
is well known that the most important components in gear 
vibration spectra are the tooth meshing frequency and its 
harmonics, together with sidebands due to modulation 
phenomena. The increment in the number and amplitude of 
sidebands indicate a fault condition. 
 
A typical time domain signal obtained from the experimental 
setup with gear fault, using accelerometer is given in Figure 
10.The time data obtained from the setups are processed with 
the Wiener filter technique to enhance the signal components. 
This is further processed using various signal processing 
techniques like wavelet enveloped power spectrum based on 
Morlet wavelet and Laplace wavelet. The GMF and its side 
bands are represented in various power spectrums with 
indication of data cursor value.The rotational frequency of 
pinion, gear, GMF and some of theside bands of GMF are 
depicted in Table 3 for both the experimental setups. 
 

 
 

Figure 10.Time domain signal of gear with fault 
 

Table 3.Frequency of rotation 
 

Description Experimental set 
up 1(Frequency) 

Experimental set 
up 2(Frequency) 

Pinion rotational 
frequency 

48 15 

Gear rotational 
frequency 

24 10 

GMF 1093 300 
Side band 
frequency at GMF  

1045 285 

Side band 
frequency at GMF  

1140 290 
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4.1 Laplace Wavelet Enveloped Power Spectrum for 

the Experimental Set Up 1 

 
(a) 

 
(b) 

 
(c) 

 
Figure 11.Laplace wavelet enveloped Power Spectrums for 
experimental set up 1. (a) Without any defect. (b) 1st stage of 

defect. (c) 2nd stage of defect 
 
Figure 11 (a) to 11(d) depicts that vibration amplitude at 
GMFis increasing in line with the severity of fault from 170 to 
599 mm/s2 with dominant sidebands. Side bands in the 
spectrum indicate the severity of the fault. The side bands 
level remains low for healthy condition of gears and the side 
bands are risingwith the severity of the fault. 
 

4.2 Laplace Wavelet Enveloped Power Spectrum for 

the Experimental Set Up 2 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
Figure 12.Laplace wavelet enveloped Power Spectrums for 
experimental set up 2. (a) Without any defect. (b) 1st stage of 

defect. (c) 2nd stage of defect(d) 3rd stage of defect 
 
Figures 12(a)-12(d) depicts the Laplace wavelet enveloped 
power spectrums for the healthy and faulty gear in three 
different stages of fault for the experimental setup2. The 
vibration amplitude at GMFis increasing in line with the 
severity of fault from 367.5 to 648 mm/s2 with dominant 
sidebands, indicating severity of fault. Side band level remains 
low as seen in Figure 12(a), for a gear box in good condition.  
 
4.3 Morlet Wavelet Enveloped Power Spectrum for 

Experimental Set Up 1: 

 
(a) 

 
(b) 

 
(c) 

 
Figure 13.Morlet wavelet enveloped Power Spectrums for 

experimental set up 1. (a) Without any defect. (b) 1st stage of 
defect. (c) 2nd stage of defect 

 
The vibration data of the experimental set up 1used to develop 
the Morlet wavelet enveloped power spectrums are shown in 
Figure 13(a) – 13(d). Amplitude of GMF is increasing from 
328to 1431 mm/s2 for healthy gear and faulty gear in 2 
different stages. The significant increase in amplitude of side 
bands above the GMF amplitude indicates the severity of 
fault. 
4.4Morlet wavelet enveloped Power Spectrum for the 

experimental set up 2 
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(c) 

 
(d) 

 
Figure 14.Morlet wavelet enveloped Power Spectrums for 

experimental set up 2. (a) Without any defect. (b) 1st stage of 
defect. (c) 2nd stage of defect (d) 3rd stage defect 

 
Morlet wavelet enveloped power spectrums developed for the 
experimental set up2 data are shown in Figure 14(a)–14(d). 
Amplitude at GMF is increasing from 109 to 1206 mm/s2 for 
healthy gear and faulty gear in 3 different stages.Vibration 
amplitude of side bands are significant. Changes in the 
number and strength of the side bands are noticed. 
 
5. LAPLACE WAVELET TRANSFORM AND ANN 

FOR FAULT CLASSIFICATION 

Although analysis of wavelet enveloped power spectrum by an 
experienced technical person is possible, computerized 
inspection is easier and recommended for the increasing 
demand for on-line automated condition monitoring 
applications. Artificial neural network (ANN) is used for an 
automated detection and diagnosis of gear conditions. To 
speed up the classification process and to make it suitable for 
the online condition monitoring, the data processed using 
Laplace-wavelet transform is used as input to ANN. The 
extracted features in time and frequency domain are used as 
the ANN input vectors for the gear condition identification. 

The ANN classifier parameters are optimized using GA by 
minimizing the mean square error (MSE). 
 
As shown in Figure 3, the scale-kurtosis distribution for 
different gear conditions, it could be seen that the scales range 
of 20-30 are the mostly dominant scales, which can reveal the 
gear condition sufficiently. The predominant Laplace wavelet 
transform scale based on the scale-kurtosis value has been 
selected for features extraction.  
 
The four extracted features in time and frequency domain for 
the dominant scale are:  
1) Time domain features: This includes Standard Deviation 
(SD), and Kurtosis factor(KF).  
2)Frequency domain features: This includes the ratio of 
SWPSpeak frequency (fmax) to the shaft rotational frequency 
(frpm), and the ratio of SWPS maximum amplitude (Amax) to the 
overall amplitude (Sum (Ai)).  
 
The scheme of feature extraction and overall architecture of 
ANN is depicted in Figure 15. 
 

 
 

Figure 15: features extraction and ANN architecture 
 
A feed-forward multi-layer perceptron (MLP) neural network 
with three layers has been developed namely Input layer, 
Hidden layer and output layer. The features extracted from the 
predominant scale of Laplace wavelet transform in time and 
frequency domain are used as input to ANN with four source 
nodes. The hidden layer with seven computation nodes has 
been used. The number of the hidden nodes is optimized using 
a genetic algorithm by minimization of Mean Square Error 
(MSE) between the actual network outputs and the 
corresponding target values. The output layer has three nodes 
to represent working conditions of gear. 
 
The three digit output target nodes need to be mapped by the 
ANN are represented as [1,0,0] for the healthy 
condition,[0,1,0] for the stage 1, and [0,0,1] for stage 2 of 
gear. 
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The activation function f1, bias b and weight w are used to 
transform the input vector to intermediate vector h and the 
output vector Oof the network is obtained from the vector of 
the intermediate variable h through a similar transformation 
using activation function f2 at the output layer. The connection 
weights and biases are modified iteratively to optimize the 
performance criterion, while training the network. Commonly 
used minimization of mean square error(MSE) is used as the 
performance criterion. The process is repeated until the overall 
MSE value drops below some pre-determined threshold 
(stopping criterion). After the training process, the ANN 
weights are fixed and the system is deployed for the unseen 
vibration data.  
 
In this work MATLAB software is used for ANN process with 
Levenberg-Marquarat Back-propagation (LMBP) training 
algorithm, a MSE of 10E-10, a minimum gradient of 10E-20 
and maximum iteration (epochs) of 1000 were used. The 
training process would stop if any of these conditions were 
met. The initial weights and biases of the network were 
generated automatically by the program 
 
5.1 Implementing WT and ANN 

The data collected from the experimental setup with different 
working conditions are used to train and test the ANN. The 
neural network input feature vectors consisting of four groups 
representing the different gear conditions are used to train the 
network. The data sets of size 1920 samples each is used to 
train the network.The parameters used for the network are 
shown in Table 4 
 

Table 4: Parameters used for the network 
 

Transfer Function of Hidden Layer Sigmoid 
Transfer Function of output Layer Linear 
Training Algorithms Levenberg-

Marquarat 
Maximum number of epochs 1000 
MSE stopping criteria 1e-10 
Minimum performance gradient 1e-20 
Number of input nodes  4 
Number of hidden nodes 7 

 
The training can ceaseaccording to any one of the criteria of 
mean square error (MSE), the number of epochs of training or 
minimum performance gradient reaches certain value set as 
shown in Table 4. The result of ANN learning processhas R 
value of above 0.99 for training, testing and validation, which 
is the indication of the relationship between the outputs and 
targets of ANN The ANN learning process and the 
performance plot is depicted in Figure 16, which shows that 
the training with 82 epochs met the MSE stopping criteria 
(MSE less than 10E-10). 
 

 
 

Figure 16: ANN Learning process and performance plot 
 
The ideal output target nodes needs to be mapped by the ANN 
are represented as [1,0,0] for the healthy condition,[0,1,0] for 
the stage 1, and [0,0,1] for stage 2 of gear  condition is 
depicted in Figure 17(a)and the testing process is depicted in 
Figure (b).The successful classification of ANN test process 
for unseen vibration data of the trained ANN for the healthy, 
stage1 and stage 2 of gear condition are shown in Figure17(c)-
17(e) respectively. 
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(c) 

 
(d) 

 
(e) 

 
Figure 17: ANN train and testing process (a) Training process 

(b) Testing process (c) Test process for unseen healthy data 
(d) Test process for unseen stage1 data(e) Test process for 

unseen stage 2 data 
 
CONCLUSIONS 

Wavelet enveloped power spectrum and ANN used for gear 
fault detection and diagnosis is presented in this paper.Various 
stages of induced fault and healthy conditions of gear are 
studied using Laplace and Morlet wavelet based envelop 
power spectrum. Wiener filter is used toenhance the fault 
signal components, which support for the early detection of 
the fault. 
 

Further, the studies conducted indicates that both Morlet and 
Laplace wavelet based enveloped power spectrum depicts 
significant increase in magnitude of vibration amplitude at 
GMF along with increase inthe size of fault.Laplace wavelet 
analysis is more powerful inisolating peaks at multiple RPM 
sidebands of GMF which canprovide more precise information 
about defect condition. Wavelet and ANN parameters are 
optimized using Genetic algorithm. Features extracted from 
optimized wavelet scale are used as input vectors to ANN.The 
application of proposed technique shows its effective detection 
and classification of ANN test. 
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