
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 08 | Aug-2013, Available @ http://www.ijret.org 312

COMPARATIVE ANALYSIS OF DYNAMIC PROGRAMMING

ALGORITHMS TO FIND SIMILARITY IN GENE SEQUENCES

Shankar Biradar1, Vinod Desai2, Basavaraj Madagouda3, Manjunath Patil4
1, 2, 3, 4 Assistant Professor, Department of Computer Science & Engineering, Angadi Institute of Technology and

Management, Belgaum, Karnataka, India.
shankar_pda@yahoo.com, vinod.cd0891@gmail.com, basavarajmadagoda@gmail.com, manjunath.patil03@gmail.com

Abstract

There exist many computational methods for finding similarity in gene sequence, finding suitable methods that gives optimal similarity
is difficult task. Objective of this project is to find an appropriate method to compute similarity in gene/protein sequence, both within
the families and across the families. Many dynamic programming algorithms like Levenshtein edit distance; Longest Common
Subsequence and Smith-waterman have used dynamic programming approach to find similarities between two sequences. But none of
the method mentioned above have used real benchmark data sets. They have only used dynamic programming algorithms for synthetic
data. We proposed a new method to compute similarity. The performance of the proposed algorithm is evaluated using number of data
sets from various families, and similarity value is calculated both within the family and across the families. A comparative analysis
and time complexity of the proposed method reveal that Smith-waterman approach is appropriate method when gene/protein sequence
belongs to same family and Longest Common Subsequence is best suited when sequence belong to two different families.

Keywords - Bioinformatics, Gene, Gene Sequencing, Edit distance, String Similarity.

---***---

1. INTRODUCTION

Bioinformatics is the application of computer technology to
the management of biological information. The field of
bioinformatics has gained widespread popularity largely due
to efforts such as the genome projects, which have produced
lot of biological sequence data for analysis. This has led to the
development and improvement of many computational
techniques for making inference in biology and medicine. A
gene is a molecular unit of heredity of a living organism. It is
a name given to some stretches of DNA and RNA that code
for a polypeptide or for an RNA chain that has a function in
the organism. Genes hold the information to build and
maintain an organism's cells and pass genetic characteristic to
their child. Gene sequencing can be used to gain important
information on genes, genetic variation and gene function for
biological and medical studies [13]. Edit distance is a method
of finding similarity between gene/protein sequences by
finding dissimilarity between two sequences [5]. Edit distance
between source and target string is represented by how many
fundamental operation are required to transfer source string
into target, these fundamental operations are insertion,
deletion and subtraction. The similarity of two strings is the
minimum number of edit distance. String Similarity is
quantitative term that shows degree of commonality or
difference between two comparative sequences [10], Finding
the gene similarity has massive use in the field of
bioinformatics.

2. MATERIALS AND METHODS

In this section we describe the various materials and methods
which are used in our algorithms

2.1 Dataset Used

For the experiment purpose we took data sets from 5 different
families which are listed below, and the source of information
is [16] [17].
Family: kruppel c2h2-type zinc finger protein.
Family: caution-diffusion facilitator (CDF) transporter family.
Family: E3 ubquitin-protein ligase.
Family: Semaphorin-7A.
Family: SPAG11 family.

2.2 Dataset Format

In this research work we used various data sets from different
families for the implementation of different algorithms, all this
data set is in FASTA format. In bioinformatics, FASTA
format is a text-based format for representing nucleotide
sequences, in which nucleotides or amino acids are
represented using single-letter codes. The format also contain
sequence name before the sequences start. A sequence in
FASTA format begins with a single-line description, followed
by lines of sequence data. The description line is distinguished
from the sequence data by a greater-than (">") symbol in the
first column. The word following the ">" symbol is the
identifier of the sequence, and the rest of the line is the

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 08 | Aug-2013, Available @ http://www.ijret.org 313

description (both are optional). There should be no space
between the ">" and the first letter of the identifier. It is
recommended that all lines of text be shorter than 80
characters. The sequence ends if another line starting with a
">" appears; this indicates the start of another sequence.

2.3 Gap Penalty

In order to get best possible sequence alignment between two
DNA sequences, it important to insert gaps in sequence
alignment and use gap penalties. While aligning DNA
sequences, a positive score is assigned for matches negative
score is assigned for mismatch To find out score for matches
and mismatches in alignments of proteins, it is necessary to
know how often one sequence is substituted for another in
related proteins. In addition, a method is needed to account for
insertions and deletions that sometimes appear in related DNA
or protein sequences. To accommodate such sequence
variations, gaps that appear in sequence alignments are given a
negative penalty score reflecting the fact that they are not
expected to occur very often. It is very difficult to get the best-
possible alignment, either global or local, unless gaps are
included in the alignment.

2.4 Blosum Matrix

A Blosum matrix is necessary for pair wise sequence
alignment. The four DNA bases are of two types, purines (A
and G) and pyrimidines (T and C). The purines are chemically
similar to each other and the pyrimidines are chemically
similar to each other. Therefore, we will penalize substitutions
between a purine and a purine or between a pyrimidine and a
pyrimidine (transitions) less heavily than substitutions
between purines and pyrimidines (transfusions). We will use
the following matrix for substitutions and matching’s. The
score is 2 for a match, 1 for a purine with a purine or a
pyrimidine with a pyrimidine, and -1 for a purine with a
pyrimidine.

3. ALGORITHMS

Dynamic programming algorithms for finding gene sequence
similarity are discussed in detail in this section along with
pseudo codes and algorithms. We used three algorithms for
analysis purpose, all these algorithms uses the concept of
dynamic programming, which is output sequence depends
upon the input of previous sequence. Those three algorithms
are.

a. Levenshtein edit distance algorithm
b. Longest common subsequence algorithm
c. Smith-waterman algorithm

3.1 Levenshtein Edit Distance Algorithms

It is one of the most popular algorithms to find dissimilarity
between two nucleotide sequences, it is an approximate string
matching algorithm mainly used for forensic data set, the basic

principle of this algorithm is to measure the similarity between
two strings [4]. This is done by calculating the number of
basic operations as mentioned in introduction part. Algorithm
for Levenshtein edit distance is as fallows

Int LevenshteinDistance (char S[1..N], char T[1...M])
 {

Declare int D[1....N, 1....M]
For i from 0 to N
D[i,0] := i // the distance of any first string to an empty
second string
For j from 0 to M
D[0, j] := j // the distance of any second string to an empty
first string
For j from 1 to M

 {
 For i from 1 to N
 {

S[i] = T[j] then
D[i, j] := D[i-1, j-1]
Else
D[i,j] := min {

D[i-1 , j] +1 // deletion
D[i, j-1] +1 // insertion
D[i-1, j-1] +1// substitution
 }

 }
 }
 Return D[M, N]

}

3.2 Longest Common Subsequence Algorithm

Finding LCS [3] [8] is one way of computing how similar two
sequences are, Longer the LCS more similar they are. The
LCS problem is a special case of the edit distance problem.
LCS is similar to Levenshtein edit distance algorithm except
few steps and it also involves trace back process in order to
find similar sequences.

Algorithm for Longest common subsequence is as fallows
Int LCS (char S[1...N], char T[1....M])
{
Declare int D[1....N, 1....M]
For i from 0 to N
D[i,0] := 0
For j from 0 to M
D[0, j] := 0
For j from 1 to M

{
 For i from 1 to N

{
D[i,j] := max {

V1;
V2;
V3+1 if S=T else V3

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 08 | Aug-2013, Available @ http://www.ijret.org 314

 }
}

}
Return D [M, N]
 }

Where V1 = the value in the cell to the left of current cell.
V2= the value in the cell above the current cell.
V3= value in the cell above left to the current cell,
S and T are source string and Target string respectively

3.3 Smith-Waterman Algorithm

The Smith–Waterman algorithm is a well-known algorithm for
performing local sequence alignment; that is, for determining
similar regions between two nucleotide or protein sequences.
Instead of looking at the total sequence, the Smith–Waterman
algorithm compares segments of all possible lengths and
optimizes the similarity measure.

Smith-waterman algorithm differ from other Local alignment
algorithm in fallowing factors

a. A negative score/weight must be given to mismatches.
b. Zero must be the minimum score recorded in the

matrix.
c. The beginning and end of an optimal path may be found

anywhere in the matrix not just the last row or column.

Pseudo code core smith-waterman algorithm is as fallows.
Pseudo code for initialization of matrix
For i=0 to length(A)
F(i,0) ← d*i
For j=0 to length(B)
F(0,j) ← d*j
For i=1 to length(A)
For j=1 to length(B)
{

Diag ← F(i-1,j-1) + S(Ai, Bj)
Up ← F(i-1, j) + d
Left ← F(i, j-1) + d
F(i,j) ← max(Match, Insert, Delete)

}
Pseudo code for SW alignment
For (int i=1;i<=n;i++)
For (int j=1;j<=m;j++)

int s=score[seq1.charAt(i-1)][seq2.charAt(j-1)];
int val=max(0,F[i-1][j-1]+s,F[i-1][j]-d,F[i][j-1]-d);
F[i][j]=val;
If (val==0)

B[i][j]=null;
Else if(val==F[i-1][j-1]+s)

B[i][j]=new Traceback2(i-1,j-1);
Else if(val==F[i-1][j]-d)

S[i][j]= new Traceback2(i-1,j);
Else if(val==F]i][j-1]-d)

B[i][j]= new Traceback2(i,j-1);

Where i and j are columns and rows respectively, S (xi; yj) is
value of substitution matrix and g is gap penalty, the
substitution matrix is a matrix which describes the rate at
which one character in a sequence changes to other character
states over time

3.4 Results within the Same Families

Table1. Family: cation-duffusion facilitator

Figure1. Similarity graph for cation-duffusion facilitator
family

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 08 | Aug-2013, Available @ http://www.ijret.org 315

Table2. Family: semaphorin

Figure2. Similarity graph for family semaphorin

In the figure 2, blue line indicates similarity in smith-
waterman algorithm, red line indicate similarity in longest
common subsequence algorithm and finally the green line
indicate similarity in Levenshtein algorithm. As we see from
the graph smith-water man algorithm is more efficient then
other two algorithms while finding the similarity of gene
sequences that belonging to same family.

3.5 Results between Different Families

Figure3. Similarity graph across family

Where red line indicates LCS algorithm, green line indicates
Levenshtein edit distance algorithm and blue line is for smith-
waterman algorithm. From the above graph, we can conclude
that while comparing two gene sequences belonging to
different families, longest common subsequence is better
algorithm because it gives maximum similarity as compare to
other two algorithms.

Table3. Similarities across the families

CONCLUSIONS

We considered finding the gene sequence similarity using
dynamic programming for our project work. In dynamic
programming there exist many different approaches to find
similarity among gene sequences; we took some of these
algorithms for our project and did comparative analysis of
these algorithms using datasets from five different families.
We took different protein sequences from all these dataset as
input to our program and did rigorous experimentation on
these datasets, both within the families and across the families.
Five data sets which are used for our experimental work are
kruppel c2h2-type zinc finger protein, cation-diffusion
facilitator (CDF) transporter, E3 ubquitin –protein ligase,
semaphorin and finally SPAG11B and got the results as
discussed in the previous section. From the results we can
conclude that smith-waterman algorithm is best suited to find
similarity for protein sequences that belonging to the same
family, and longest common subsequence algorithm is best

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Issue: 08 | Aug-2013, Available @ http://www.ijret.org 316

suited for protein sequences that are belong to different
families.

REFERENCES

[1] S. Hirschberg; “Algorithms for the longest common
subsequence problem”. J.ACM, 24;{664-675};1977

[2] Levenshtein V.I; “binary code capable of correcting
deletion, insertion and reversal”; soviet physics
doklady; vol 8; 1966

[3] Ristead, R.S Yianilos,P.N; “learning string edit
distance”; IEEE Transaction or pattern analysis and
machine intelligence; 1998

[4] L. Bergroth; “Survey of Longest Common Subsequence
Algorithms”; Department of Computer Science,
University of Turku20520 Turku,Finland; 2000 IEEE

[5] Hekki Hyyro, Ayumi Shinohara; “A new bit-parallel-
distance algorithm”; Nikoltseas.LNCS 3772; 2005

[6] Adrian Horia Dediu,et al; “A fast longest common
subsequence algorithm for similar strings”; Language
and automation theory and application, International
Conference, LATA; 2010

[7] Patsaraporn Somboonsat, Mud-Armeen munlin; “a new
edit distance method for finding similarity in DNA
sequence”; world academy of science engineering and
technology 58; 2011

[8] Dekang Lin; “ An Information-Theoretic Definition of
Similarity”; Department of Computer Science
University of Manitoba,Winnipeg, Manitoba, Canada
R3T 2N2

[9] Xingqin Qi, Qin Wu, Yusen Zhang2, Eddie Fuller and
Cun-Quan Zhang1; “A Novel Model for DNA
Sequence Similarity Analysis Based on Graph Theory”;
Department of Mathematics,

[10] West Virginia University, Morgantown, WV, USA,
26506. School of Mathematics and Statistics,Shandong
University at Weihai, Weihai, China, 264209 Gina M.
Cannarozzi; “String Alignment using Dynamic
Programming”

[11] David R Bentley; Whole-genome re-sequencing.
[12] M. Madan Babu; Biological Databases and Protein

Sequence Analysis; Center for Biotechnology, Anna
University, Chenna

[13] A pattern classification; Richard O.Duda, peter E.Hart,
David G.Stork 2nd editon;

[14] simultaneous solution of the RNA folding alignment
and protosequence problem; David Sankoff Siam
,J.Apple Math; vol 45; 1985

[15] http://www.ncbi.nlm.nih.gov/
[16] http://www.uniprot.org/uniprot/

