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Abstract
There exist many computational methods for finding similarity in gene sequence, finding suitable methods that gives optimal similarity
is difficult task. Objective of this project isto find an appropriate method to compute similarity in gene/protein sequence, both within
the families and across the families. Many dynamic programming algorithms like Levenshtein edit distance; Longest Common
Subsequence and Smith-waterman have used dynamic programming approach to find similarities between two sequences. But none of
the method mentioned above have used real benchmark data sets. They have only used dynamic programming algorithms for synthetic
data. We proposed a new method to compute similarity. The performance of the proposed algorithmis evaluated using number of data
sets from various families, and similarity value is calculated both within the family and across the families. A comparative analysis
and time complexity of the proposed method reveal that Smith-waterman approach is appropriate method when gene/protein sequence

belongs to same family and Longest Common Subsequence is best suited when sequence belong to two different families.
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1. INTRODUCTION

Bioinformatics is the application of computer teclogy to
the management of biological information. The fietd
bioinformatics has gained widespread popularitgefy due

to efforts such as the genome projects, which lpmeduced

lot of biological sequence data for analysis. Tas led to the
development and improvement of many computational
techniques for making inference in biology and roiedi. A
geneis a molecular unit of heredity of a living orgamislt is

a name given to some stretches of DNA and RNA tbde

for a polypeptide or for an RNA chain that has acfion in

the organism. Genes hold the information to buildd a
maintain an organism's cells and pass genetic cfegistic to
their child. Gene sequencing can be used to gain important
information on genes, genetic variation and gemetfan for
biological and medical studies [13]. Edit distaime@ method

of finding similarity between gene/protein sequenday
finding dissimilarity between two sequences [5]itElistance
between source and target string is representdtbiaymany
fundamental operation are required to transfer coutring
into target, these fundamental operations are tioser
deletion and subtraction. The similarity of twoirsgs is the
minimum number of edit distance. String Similarity is
guantitative term that shows degree of commonabty
difference between two comparative sequences Hi@fing

the gene similarity has massive use in the field of
bioinformatics.

2. MATERIALSAND METHODS

In this section we describe the various materiats methods
which are used in our algorithms

2.1 Dataset Used

For the experiment purpose we took data sets fraliffé&rent
families which are listed below, and the sourcénfdrmation
is [16] [17].

Family: kruppel c2h2-type zinc finger protein.

Family: caution-diffusion facilitator (CDF) transger family.

Family: E3 ubquitin-protein ligase.

Family: Semaphorin-7A.

Family: SPAG11 family.

2.2 Dataset Format

In this research work we used various data setn fiifferent
families for the implementation of different algtwins, all this
data set is in FASTA format. In bioinformatics, FRAS
format is a text-based format for representing eotdfle
sequences, in which nucleotides or amino acids are
represented using single-letter codes. The forisat @ontain
sequence name before the sequences start. A seqirenc
FASTA format begins with a single-line descriptidoljowed
by lines of sequence data. The description lirdisgnguished
from the sequence data by a greater-than (">") synmbthe
first column. The word following the ">" symbol ithe
identifier of the sequence, and the rest of the lis the
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description (both are optional). There should be space
between the ">" and the first letter of the ideatif It is
recommended that all lines of text be shorter tt&h
characters. The sequence ends if another linengastith a
">" appears; this indicates the start of anothqueace.

2.3 Gap Penalty

In order to get best possible sequence alignmemidesm two
DNA sequences, it important to insert gaps in seqee
alignment and use gap penalties. While aligning DNA
sequences, a positive score is assigned for matubgetive
score is assigned for mismatch To find out scorenfatches
and mismatches in alignments of proteins, it isessary to
know how often one sequence is substituted for rearoin
related proteins. In addition, a method is needeattount for
insertions and deletions that sometimes appeaiéted DNA

or protein sequences. To accommodate such sequence
variations, gaps that appear in sequence alignnaeatgiven a
negative penalty score reflecting the fact thatythee not
expected to occur very often. It is very diffictdtget the best-
possible alignment, either global or local, unlgggps are
included in the alignment.

2.4 Blosum Matrix

A Blosum matrix is necessary for pair wise sequence
alignment. The four DNA bases are of two typesjmas (A
and G) and pyrimidines (T and C). The purines &entcally
similar to each other and the pyrimidines are cloatyi
similar to each other. Therefore, we will penakzdbstitutions
between a purine and a purine or between a pynimidnd a
pyrimidine (transitions) less heavily than substitns
between purines and pyrimidines (transfusions). Wileuse
the following matrix for substitutions and matchimgThe
score is 2 for a match, 1 for a purine with a perrior a
pyrimidine with a pyrimidine, and -1 for a purineithv a
pyrimidine.

3.ALGORITHMS

Dynamic programming algorithms for finding gene weace
similarity are discussed in detail in this sectialong with
pseudo codes and algorithms. We used three alguritior
analysis purpose, all these algorithms uses theepinof
dynamic programming, which is output sequence dépen
upon the input of previous sequence. Those thrgeritims
are.

a. Levenshtein edit distance algorithm

b. Longest common subsequence algorithm

c. Smith-waterman algorithm

3.1 Levenshtein Edit Distance Algorithms

It is one of the most popular algorithms to findgimilarity
between two nucleotide sequences, it is an appairirstring
matching algorithm mainly used for forensic dat & basic

principle of this algorithm is to measure the sarity between
two strings [4]. This is done by calculating thenther of
basic operations as mentioned in introduction glgorithm

for Levenshtein edit distance is as fallows

Int LevenshteinDistance (char S[1..N], char T[1].)M
{
Declare int D[1....N, 1....M]
ForifromOto N
D[i,0] := i // the distance of any first string tm empty
second string
ForjfromOto M
D[0, j] :=j /I the distance of any second strimgan empty
first string
Forjfrom1toM
{

Forifrom1toN
{
S[i] = T[j] then
DI[i, j] := D[i-1, j-1]

Else

D[i,j] := min {
D[i-1, j] +1 // deletion
DI[i, j-1] +1 // insertion
D[i-1, j-1] +1// substitution

}
}
}
Return D[M, N]

}

3.2 Longest Common Subsequence Algorithm

Finding LCS [3] [8] is one way of computing how gian two
sequences are, Longer the LCS more similar they Hre
LCS problem is a special case of the edit distgmoblem.
LCS is similar to Levenshtein edit distance aldontexcept
few steps and it also involves trace back processriler to
find similar sequences.

Algorithm for Longest common subsequence is asvial
Int LCS (char S[1...N], char T[1....M])
{
Declare int D[1....N, 1....M]
ForifromOto N
D[i,0]:=0
ForjfromOto M
D[0,j]:=0
Forjfrom1toM
{

Forifrom1to N

{
D[i,j] := max {
V1,
V2;
V3+1 if S=T else V3
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}
}
Return D [M, N]

}

Where V1 = the value in the cell to the left of reunt cell.
V2= the value in the cell above the current cell.

V3= value in the cell above left to the current,cel

S and T are source string and Target string reisedct

3.3 Smith-Waterman Algorithm

The Smith—Waterman algorithm is a well-known altgori for

performing local sequence alignment; that is, fetedmining

similar regions between two nucleotide or protesquences.
Instead of looking at the total sequence, the Srfithterman
algorithm compares segments of all possible lengthd

optimizes the similarity measure.

Smith-waterman algorithm differ from other Localgament
algorithm in fallowing factors
a. A negative score/weight must be given to mismatches
b. Zero must be the minimum score recorded in the
matrix.
c. The beginning and end of an optimal path may bedou
anywhere in the matrix not just the last row omucoh.

Pseudo code core smith-waterman algorithm is &snfal
Pseudo code for initialization of matrix

For i=0 to length(A)

F(i,0) — d*i

For j=0 to length(B)

F(O,)) — d¥

For i=1 to length(A)

For j=1 to length(B)

{

Diag < F(i-1,j-1) + S(Ai, Bj)

Up < F(i-1,)) +d

Left — F(i, j-1) + d

F(i,j) < max(Match, Insert, Delete)
}

Pseudo code for SW alignment
For (inti=1;i<=n;i++)
For (int j=1;j<=m;j++)
int s=score[seql.charAt(i-1)][seq2.charAt(j-1)];
int val=max(0,F[i-1][j-1]+s,F[i-1][j]-d,F[i][j-1]-d);
Flil[]=val;
If (val==0)
B[i][j]=null;
Else if(val==F[i-1][j-1]+s)
B[i][j]l=new Traceback2(i-1,j-1);
Else if(val==F[i-1][j]-d)
S[i][j]= new Traceback2(i-1,));
Else if(val==F]i][j-1]-d)
B[i][]]= new Traceback2(i,j-1);

Where i and j are columns and rows respectiveliSyj) is

value of substitution matrix and g is gap penaltge

substitution matrix is a matrix which describes tla¢e at
which one character in a sequence changes to ollaeacter
states over time

3.4 Resultswithin the Same Families

Tablel. Family: cation-duffusion facilitator
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Figurel. Similarity graph for cation-duffusion facilitator
family
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Table2. Family: semaphorin Where red line indicates LCS algorithm, green liméicates
Levenshtein edit distance algorithm and blue l;éi smith-
waterman algorithm. From the above graph, we cactlode

Seql: Seq2: Seql: | Seql: Sinlonty mLCS | Sinularityin LD | Sinularty that while Comparing two gene sequences belong-mg t
proteinname | protemnae | .o | Lengh msw . . X
different families, longest common subsequence étteb
Sengphor- | Senphorio- | 75 | 349 b5 i 568 algorithm because it gives maximum similarity ampare to
T « other two algorithms.
Semaphorin- | Semaphori- | 728 786 2% 167 598 o .
7 !\ Table3. Similarities across the families
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sequences that belonging to same family. We considered finding the gene sequence similariing
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similarity among gene sequences; we took some e$eth
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Figure3. Similarity graph across family
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suited for protein sequences that are belong tderdifit
families.
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