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Abstract

In this paper artificial neural network based senstformatics architecture has been investigatet;luding proposed continuous
daily estimation of area wise surface soil moistuséng cosmic ray sensor’s neutron count time sefsudy was conducted based on
cosmic ray data available from two Australian Idoats. The main focus of this study was to develaata driven approach to
convert neutron counts into area wise ground swefaoil moisture estimates. Independent surface raoisture data from the
Australian Water Availability Project (AWAP) wasedsas ground truth. A comparative study using @ifeerent types of neural
networks, namely, Feed Forward Back PropagationBPN), Multi-Layer Perceptron (MLPN), Radial Basisirietion (RBFN),
Elman (EN), and Probabilistic networks (PNN) wasduocted to evaluate the overall soil moisture estiom accuracy. Best
performance from the Elman network outperformedo#ifier neural networks with 94% accuracy with 92&fnstivity and 97%
specificity based on Tullochgorum data. Overallthigccuracy proved the effectiveness of the Elmamahaetwork to estimate

surface soil moisture continuously using cosmicsaysors.

Index Terms. Artificial Neural Network, Surface Soil Moistut@psmic Ray Sensors, Neutron Counts.
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1. INTRODUCTION

The Australian Cosmic Ray Sensor Soil Moisture Mg
Network (CosmOz) [1-5] (Fig.l) is a near-real time
continental scale soil moisture monitoring systernyinally
inspired by the United States Cosmic-ray Soil Maoist
Observing System (COSMOS) [3]. CosmOz aims to tiest
utility of the Hydroinnova CRS-1000 cosmic ray smibisture
probes [4] (Fig.1) for water management, water riméation,
hydrological process research applications and téest
feasibility and utility of a national near-real #nsoil moisture
measurement network. The cosmic ray soil moispuode
measures the neutrons released when cosmic rayadhivith
hydrogen atoms in water molecules found in the soitl
atmosphere. The number of fast neutrons emitted thée
atmosphere is inversely correlated with soil most[L, 3].
In order to convert the neutron counts into surfacd
moisture the currently available field calibratiorethod for
the cosmic ray sensors is very time consuming aefficient.
The method only considers two separate field catlibns to
represent the whole year’s soil moisture variatibhe main
focus of this study investigates the possibilityaofalternative
supervised data driven approach based on varidifcial
neural networks (ANN) to estimate surface soil moes
remotely and continuously. A comparative study gsfive
different types of neural ANNs were conducted taleate the
overall soil moisture estimation accuracy; Feedawod Back
Propagation, Multi-Layer Perceptron, Radial Basimdtion,

Elman, and Probabilistic networks. Study was cotetlic
based on cosmic ray data available from two Austmal
locations; Tullochgorum (Longitude = 147.9, Latiéud -41.7)
and Norwin (Longitude = 151.3, Latitude = -27.6).
Experimental time period for Tullochgorum was 2115 —
2013/01/02 (723 days), and 2011/05/11- 2013/01/6837 (
days) for Norwin [1-10].

2. EXPERIMENTAL DESIGN
2.1 Cosmic Ray Sensor Data

The Cosmic Ray sensor’'s most important data atg#are
the atmospheric pressure corrected neutron couhtainfall,
which have been used for this study as training tasting
inputs. Fig. 2 shows the neutron count data recbfdem the
Tullochgorum location [1-20].

2.2 Australian Water Availability Project (AWAP)

Data

The AWAP database is developed to monitor the siatk
trend of the terrestrial water balance of the Aalgn
continent, using model-data fusion methods to camltioth
measurements and modeling. Time series data waacted
from the gridded map data based on latitude anditiode.
Soil moisture data available from the AWAP has besed as
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Fig -1: The Australian Cosmic Ray Sensor Network (Cosméb) Hydroinnova CRS-1000 cosmic ray soil moistuobe deployed
in Tullochgorum site.

external ground truth data to establish the ciasselation
between recorded neutron counts and volumetriaesearsoil
moisture. Available evapotranspiration data from AWhas
been used as an additional training and testingting the
ANNSs (See Fig.2) [1-5].

2.3 Problem Formulation

Daily data for each of the inputs and target wasnmeed for
both the locations. An incremental optimizationcaithm was
used to identify the best possible training andrigsrelative
percentages where prediction accuracy was maximutim w
highest sensitivity and specificity. In the traigiphase daily
average neutron counts, rainfall and evapotransmirdrom
the training input set were used to train ANNs aghaithe
corresponding AWAP daily soil moisture trainingget. Later
in the testing phase, trained ANNs were simulated t@sted
using testing input set (unknown to the ANN paraty to
produce estimated soil moisture. Estimated soil stooé
profile from the testing phase was then evaluagainst the

testing target soil moisture profile from the AWARQ
establish the estimation performance accuracieS(}1

2.4 Methodology and Evaluation

ANN requires input(s) and a known target for tragithe

system. The training phase modulates the inteayair$ of the
system based on the training inputs. Once the Ajltesn is

trained, it is ready for testing. In the testingapé an ANN
produces an output based on the combination oftsngthe

Feed Forward Back Propagation, Multi-Layer Peraaptr
Radial Basis Function, Elman, and Probabilisticwoeks

were applied to the same data sets to establishbése
architecture as indicated by prediction accuracyP ((+

TN)/(TP + FN + FP + TN) where true positives =TRjet
negatives =TN, false positives = FP, false negatiweFN).

The evaluation process also included sensitivity (T(TP +

FN)); specificity (TN / (FP + TN) calculations tastify the

estimation correctness [1-20].
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Fig -2: The CosmOz and AWAP data representing the 201081-22013/01/02 time period at Tullochgorum sitashania.

3. ESTIMATION RESULT

A comparative study based on five different ANNsswa
conducted to identify the best network architectuvith
maximum generalization capability for estimatingcuaate
surface soil moisture from unknown cosmic neutronnts.
Based on Tullochgorum data it was found that marimu
prediction accuracy from the

Elman network was achieved with 85%-15% trainirggibe
paradigm, whereas for Norwin, it was 75%-25%. Penfnce
accuracies from the Tullochgorum data using FFBMNPN,

RBFN and PNN were 74%, 69%, 82% and 89% respegtivel

for Norwin data FFBPN, MLPN, RBFN and PNN were atole
achieve 70%, 79%, 85% and 79% respectively.

The EN outperformed all other neural networks w4

accuracy with 92% sensitivity and 97% specificitgr f
Tullochgorum and with 91% accuracy with 95% seniti

and 92% specificity for Norwin.
performances are depicted in Fig. 3. This studyckated that
artificial neural network could be an effective eaitative
method for remote and continuous estimation ofamarfsoil
moisture using the recorded fast neutron countsgusosmic
ray sensors [20-31].

Representative EN

CONCLUSIONS

This study concluded the Elman Neural network (ENbI)Id
be an effective alternative calibration method femote
estimation of bulk soil moisture using the cosngig sensors.
Better performance from the ENN could be explained
physically. It is a simple recurrent neural netwednsisting
of an input layer, a hidden layer, and an outpyédaln this
way it resembles a three layer feedforward neuetvark.
ENN are very useful for predicting time series sowyes,
since they have a limited short-term memory. Shkenrt
memory provides a unique capability to the ENN,sbgring
the previous learning step which could be usednfluence
the next learning step. At each time step, the tinjsu
propagated in a standard feed-forward fashion, thed a
learning rule is applied. The fixed back connedioesult in
the context units always maintaining a copy of phnevious
values of the hidden units (since they propagater dlie
connections before the learning rule is appliedyudr the
network can maintain a sort of state, allowingoitperform
such tasks as sequence-prediction that is beyangdtver of
a standard multilayer perceptron.

This study also concluded the supervised machiaeileg
algorithms could be an effective alternative callam method
for remote estimation of bulk soil moisture usiing tcosmic
ray sensors. Using AWAP database it was possitieato the
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ensemble estimators with long historical groundhtrgoil calibration mechanism. This way cosmic ray sensoicbe

moisture data, which provided better generalizatapability monitored and calibrated dynamically and virtually.
to predict accurate soil moisture from the cosm@utron

counts. Prediction results were very encouragiraeially
this could help us to develop a remote virtual eens
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Fig -3: EIman Network based soil moisture estimation (eves while blue represents testing target grarutt) during testing on
(a) Tullochgorum and (b) Norwin data.
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