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Abstract 

The paper describes a method to solve an ILP by describing whether an approximated integer solution to the RLP is an optimal 
solution to the ILP. If the approximated solution fails to satisfy the optimality condition, then a search will be conducted on the 
optimal hyperplane to obtain an optimal integer solution using a modified form of Branch and Bound Algorithm. 
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---------------------------------------------------------------------***------------------------------------------------------------------------ 

1. INTRODUCTION 

Integer Linear Programming (ILP) problems belong to a 
particular class of Linear programming Problems (LPP). In 
LPP, the decision variables are assumed to be continuous, but 
in ILP the decision variables are restricted so that it can take 
only discrete values. Many practical problems can be 
formulated as general Integer Programming Problems and so 
ILP problems have an outstanding relevance in many fields. 
 
Various researchers have studied about the applications of 
Integer Programming Problems. Brenda Dietrich [7] discusses 
its application in IBM, Melvin A. Breuer [6] discuss the 
application in Design Automation, and Chui-Yen and Chen [5] 
discuss the application in Crew Scheduling Problem. Some 
other problems which can be formulated as general Integer 
Programming Problems include transportation , generalised 
assignment and manpower planning problem. So Integer 
Programming technique is so useful in these areas. But 
because of the discreteness restriction on variables ILP cannot 
consider as an LPP. A general ILP can be defined as 
 Maximize z = cx 
Subject to 
 Ax ≤ b 
 x ≥ 0 and integers, 
 
Where c is an n row vector of real entries, A is an m × n 
matrix with real entries and b is an m column vector of real 
entries. 
 
Associated with each ILP, we can define relaxation RLP as  
 Maximize z = cx 
Subject to 
 Ax ≤ b 
 x ≥ 0. 

By definition, the feasible space of RLP contains the solution 
space of ILP and hence its optimal solution is an upper bound 
for ILP optimal solution. 
 
The ILP becomes computationally intractable with increase 
problem size and/or variable bounds. In any search for an 
optimal solution, early knowledge of a good solution is 
important for reasonable computational effort. Most ILP 
solution methodology starts with RLP optimal in In [1], 
different ILP solution methods are given. In addition to these 
methods, the hyperplane search methods are explained in 
[2],[3] and [4]. But the most commonly used methods are 
Gomory’s Cuttingplane Method and Branch and Bound 
Method. To apply any of these methods, the optimum solution 
of the RLP is required. If the optimum solution to the RLP is 
an integral one, then this solution can be considered as the 
optimum solution of the ILP. If the solution is non-integral, 
further investigation is necessary to obtain the optimum 
integer solution. 
 
In this paper, if the optimum solution of the RLP is non 
integral, then some integer approximated optimum feasible 
solutions of the ILP will be considered. But it cannot be 
ascertained that one of these solution is an optimal solution to 
the ILP. 
 
Consider the objective hyperplane 


 c�x� = z 

 
where each c� ∈ Z, which is a linear Diophantine equation in 
integers. Let d = gcd {c�, c� ≠ 0;  j = 1,2 … … n}. It has an 
integer solution if and only if d|z. Also if a linear Diophantine 
equation has an integer solution, then there will be infinitely 
many solutions for this equation [8]. 
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This paper aims to provide a test to examine the optimality of 
the approximated solution obtained from RLP to be an optimal 
solution of the ILP, using the concept of linear Diophantine 
equations. If it does not satisfy the optimality condition, then a 
modification of Branch and Bound method is suggested to 
arrive at the optimal solution of the ILP. 
 
In the next section some results are derived to suggest a 
computational procedure to obtain the optimal solution of the 
ILP using RLP. In section 3 an algorithm is developed for this 
purpose and in section 4 examples are cited to establish the 
effectiveness of the algorithm. 
 
2. BASIC RESULTS 

Without loss of generality, let the row vector c of the 
definition of the ILP has only integer components. If the 
components are not integers, then try to make them integers by 
multiplying all components c� with a suitable positive integer. 
Since the decision variables x are also required to be integers 
for an ILP, c�x� + c x + ⋯ … … … c"x" should be an integer 
for all integer values of c� and x� for j = 1,2, … … … . n. 
 
Consider the optimum solution to the RLP say x$%. Let z$% 
denotes the optimum value of the objective function. That is 
z$% = cx$%. If z∗ denotes the value of the objective function 
corresponding to a feasible solution of the ILP. Then z∗ is an 
integer less than or equal to z$%. 
That is z∗ ≤ cx$%. 
 
Since z∗ ≤ z$%, let z∗ = 'z$%(, the greatest integer less than or 
equal to z$%. Then consider the linear Diophantine equation 
c�x� + c x + ⋯ … … … c"x" = z∗. Also let d =
gcd{)c�, c , … … … … c"*/c, ≠ 0}. If d ∤ z∗, there will not 
exist any integer solution to the linear Diophantine equation. 
In this case let z∗ = 'z$%( − 1 and the same argument is 
applicable for the new z∗ also. Repeat the process until we get 
an  z∗ so that  z∗ is an integer less than or equal to z$% and 
d| z∗. 
 
Proposition1. Let /01 denotes the value of the objective 
function corresponding to the optimum solution of the ILP. 
Then /01 ≤  /∗ where  /∗ is an integer defined as above. 
 
Proof 
Let /21 denotes the maximum objective value to the RLP. 
Then clearly  /01 ≤  /21 
If possible assume  /01 >  /∗ 
But by definition,  /∗ ≤ /21. 
Then /∗ < /01 ≤ /21 
 
Let 567 denotes the optimum solution of the ILP so that 
8567 = /01 
So the linear Diophantine equation 9�:� + 9 : +
⋯ … … … 9;:; = /01 has a solution 567. Hence there will exist 

infinitely many integer solutions to this equation and < =
=9<{)9�, 9 , … … … … 9;*/9> ≠ 0} divides /01. Thus  /∗ <
/01 ≤ /21 and <| /∗ which is a contradiction to the assumption 
of /∗ and so /01 ≤  /∗. 
 
Proposition2. If /∗ < /21, (strict inequality) then there is no 
integer solution to the ILP lie between the hyperplanes 
85 = /21 and 85 = /∗. 
 
Proof 
Given /∗ < /21. 
If possible assume an integer point (say 5?) is lie between the 
given hyperplanes so that 85@ < /21 and 85@ > /∗. Let 
85@ = /?. Then the linear Diophantine equation 9�:� +
9 : + ⋯ … … … + 9;:; = /? will have infinitely many 
integer solutions and =9< | /?, since 5@ is an integer solution 
of the equation. Thus we have an integer /? so that  /∗ < /? <
/21 which is a contradiction and so the assumption is wrong. 
 
Proposition3. Let the optimum solution to the RLP is unique 
and non integral. Also let /21 denote the value of z 
corresponding to this optimum solution. Thus  5A7. If the 
optimum solution to the ILP exists, then there exist /? < /21 
such that the optimum solution to the ILP lies on the 
hyperplane 85 = /?. 
 
Proof 
Let 5A7 denote the optimum solution of the RLP. Let B� 
denote the set of feasible solutions to the RLP. Then B� ∩
{5 ∕ 85 = /21} is the singleton set 5A7. It is also given that 
5A7 is non integral. Let B denotes the feasible solutions to the 
ILP which is non empty. 
Now 
 B ⊆ B�; 5A7 ∈ B� and 5A7 ∉ B. 
 Also B� ∩ {5 ∕ 85 = /21} = 5A7. 

So B ∩ {5 ∕ 85 = /21} = G. 
 
Also /21 gives an upper bound for ILP. So the value of the 
objective function for the ILP, /01 should be strictly less than 
/21 and the optimum solution to the ILP will lie on the 
hyperplane 85 = /01. 
 
Remark: If /21 is an integer, the solution 5A7 is non integral 
and if there exist alternate optimum solution for the ILP (that 
is 5A7  is not unique), then the optimum solution to the ILP 
can lie on the optimum hyperplane of the RLP. That is the 
optimum solution to the ILP can lie on the hyperplane 
85 = /21. An example in the next section illustrates this fact. 
 
Theorem1. Let /∗ be an integer defined as in section 2. Let B 
denote the set of all feasible solutions to the ILP. If  B ∩
{5 ∕ 85 = z∗} is non empty, then the optimum solution to the 
ILP will lie on the hyperplane 85 = z∗. 
 
Proof 
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Let /21 denote the value of the objective function 
corresponding to the optimal solution of the RLP. Then the 
hyperplane 85 = z$% is the optimum hyperplane for the RLP. 
Also by definition of /∗, /∗ ≤ /21. 
 
Assume z∗ = z$%. 
 
It is also given that S ∩ {x ∕ cx = z∗ ≠ ϕ}. So S ∩
{x ∕ cx = z$%} ≠ ϕ. Hence there exist an integer point in the 
optimum hyperplane of the RLP which is a feasible solution of 
the ILP. Also the objective function value of RLP for its 
optimal solution is an upper bound for the ILP optimal 
solution. So the integral point must be optimal. 
 
Now assume z∗ < z$%. Then by proposition2, there is no 
feasible solution to the ILP lying between the hyperplanes 
cx = z$% and cx = z∗. So no hyperplane containing integer 
solution to the ILP exists between these two hyperplanes.  
Now since S ∩ {x ∕ cx = z∗ ≠ ϕ}, it is possible to find a 
feasible integer point on the hyperplane which gives value z∗ 
for the objective function.  From proposition1 the optimum 
solution to the ILP can give objective function value less than 
or equal to z∗. So clearly the integer point on the hyperplane 
cx = z∗ is the optimum solution to the ILP. 
 
Thus in both cases, the optimum solution to the ILP lie on the 
hyperplane cx = z∗. 
 
3. SOLUTION METHODOLOGY 

Using the results derived from the last section, it is possible to 
check whether an integer approximated solution to the RLP 
gives the optimum solution for the ILP. If it fails to give the 
optimum solution, a modified form of Branch and Bound 
algorithm is suggested to obtain the optimum solution. For the 
development of the algorithm, it is necessary to explain the 
procedure to obtain 

1. Integer approximated solution to the RLP sub 
problems 

2. An objective hyperplane for the ILP. 
 
3.1 Integer Approximated Solutions to an RLP Sub 

problem 

Given RLP is an LPP. To obtain the integer approximated 
solution, first of all solve this LPP and find the solution. Let 
the solution as x),* and the maximum objective value as z,. If 
x),* satisfies the integer requirement, then consider x∗

),* = x),* 
as the integer approximated solution with objective value 
z,∗ = z,, while if x),* is infeasible, there is no integer 
approximated solution. So consider x),* as feasible and non 
integral, consider the integer approximated solution as 
follows, 
 

For each component x� of x),*, consider Ix�J and Kx�L and then 
all combinations of these components to obtain the integer 
approximated solutions. (That is there are two choices 'x�( 
and Mx�N for x� and two choices 'x ( and Mx N for x  and so on. 
If some particular component xO is an integer, then there is 
only one choice for this component. So there will be atmost 2" 
approximated solutions).  Then consider the feasibility of each 
of these points. If a particular point is feasible, then put this 
point in the set Y,, consider the set Y,∗ = Y,\{Y, ∩ Y} where Y 
is the set of integer approximated solutions. Initially Y = ∅. If 

Y,∗ = ∅, then set Z,∗ = −∞ and x∗
),* = ∅. Otherwise find 

Z,∗ = max)cx/x ∈ Y,∗* and x∗
),* = {x ∈ Y,∗/cx = Z,∗}. Then set 

Y ≔ Y ∪ Y,∗. 
 

Then x∗
),* is the integer approximated solution to the ith sub 

problem with the objective function valueZ,∗ . 
 
3.2 Search for the Optimal Objective value and the 

Optimal Hyperplane 

Let x$% be the optimum solution of the RLP with objective 
value z$% (That is cx$% = z$%). Also let d denote the gcd of 
the cost coefficients. Let zW% denote the maximum value of the 
objective function for the ILP. Then zW% will be an integer such 
that zW% ≤ 'z$%( and d|zW%.hence the integer zX can assume so 
that zX = 'z$%(. If d ∤ zX then reduce the value zXby unity and 
check whether it is divisible by d. If not reduce the value of zX 
by unity again and so on. Hence the maximum possible value 
of z for the ILP is given by zX and cx = zX is a hyperplane 
having infinitely many integer points on it. If x$% is unique 
then  zX < z$%. If any of the integer feasible point of the ILP lie 
on this hyperplane, then cx = zX should be the optimal 
hyperplane and so zW% = zX. If none of the feasible integer oint 
lie on the hyperplane, then we have to reduce the value zX to 
obtain the optimal hyperplane and zW%. In the algorithm cx = zX 
will be considered as the optimal hyperplane and on which an 
integer point is searched. Hence this procedure explains how 
to obtain the maximum possible value zX when z$% and gcd of 
the cost coefficients of the LPP are known. 
 
3.3 Modification to Branch and Bound Method 

Now it is possible to suggest a modification to the Branch and 
Bound algorithm. The problem to be solved is an all integer 
linear programming problem PW% with maximization objective. 
Its linear programming relaxation is called P$%. It is assumed 
that a specific node and branch selection strategies have been 
chosen. The different strategies are given in [1]. The algorithm 
is initialized with node n�. Take i = 1 (That is we are 
considering the first LPP), and Y = ∅ (there are no integer 
approximated solutions are known). Obtain optimal solution 
and integer approximated solution of the RLP at node 1 (Use 
the procedure in section 3.1 with  i = 1). Let  x)�*denote its 
optimum solution with objective function value  z�. Also let 
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x∗
)�* with objective value z�∗ is the integer approximated 

solution. If x)�* has only integer components, then it is the 
optimal solution of the ILP, procedure stops here (then the 
optimum solution of the ILP will be xW% = x)�* with zW% = z�). 

Now if x)�* is not integral, then set z∗ = z�∗ and x∗ = x∗
)�*. 

Also let d = gcd{)c�, c  … … … … c"* /c, ≠ 0}. Then obtain 
the maximum possible objective function value zX using z�and 
gcd d (using the procedure in section 3.2). now if zX = z∗, then 

the integer approximated solution x∗
)�* is the optimum solution 

of the ILP with objective value z∗ and  cx = z∗ is the optimal 
hyperplane and procedure terminates. If  z∗ < zX, then by 
setting S = L = {n�}, z$% = z� and x$% = x� proceed with the 
Branch and Bound algorithm. 
 
3.4 Algorithm  

Step 1: Is \ = ∅? 
If YES: Is /∗ > −∞, then the solution 567 = 5∗ with objective 
value /01 = /∗ is optimal and 85 = /∗ is the optimal 
hyperplane. 
Otherwise the integer programming problem has no feasible 
solution. 
If NO: Go to step 2. 
 
Step 2: Choose some node ^> ∈ \ (according to some 
prescribed criterion) with solution 5)_* and objective value />. 
 
Step 3: Branch on some variable :̀  (according to some 
prescribed criterion) to the nodes ^ab� with :̀ ≤ I:̀ J and ̂ ab  
with :̀ ≥ K:̀ L. Set \ ≔ \\{^>} and B ≔ B ∪ {^ab�, ^ab }\
{^>}. Solve the LPP at ^ab� and ̂ ab . The results are solutions 
5)cbd* and 5)cbe* with objective values /ab� and /ab  and the 

improved integer approximated solutions (if it exist) 5∗
)cbd* 

and 5∗
)cbe*with objective values /ab�∗   and /ab ∗  respectively. 

 
Step 4: Is  5)cbd* feasible? 
 If YES: Go to step 5. 
 If NO: Go to step 8. 
 
Step 5: Is /ab�∗ = /̅? 
 If YES: Set 5∗ = 5∗

)cbd*;  /∗ = /ab�∗ ; \ = ∅ and go to 
step 1. 
 If NO: Go to step 6. 
 
Step 6: Does 5)cbd* satisfy the integrality requirement? 
 If YES: Go to step 7 
 If NO: Is /ab� > /∗? 
  If YES: Set \ ≔ \ ∪ {^ab�} and go to step 
8. 
  If NO: Go to step 8 
 
Step 7: Is /ab� > /∗? 
 If YES: Set 5∗ = 5)cbd*, /∗ = /ab� and go to step 8. 
 If NO: Go to step 8. 

 
Step 8: Is g = h^ i<< ^jklmn? 
 If YES: Set g = g + 1 and go to step 4. 
 If NO: Consider /21∗ = max  {/>/^> ∈ \} and go to 
step 9. 
 
Step 9: Is /21∗ = /21? 
 If YES: Set g = g + 1 and go to step 1. 
 If NO: Set /21 = /21∗ , obtain the new objective 
function value /̅ for this /21, go to step 10. 
 
Step 10: Is /∗ = /?̅ 
 If YES: Set \ = ∅ and go to step 1. 
 If NO: Set g = g + 1, go to step 1. 
 
The key of the algorithm is the updating procedure of the sets 
S and L. In each step when the procedure branches from some 
node n, to two nodes nob� and nob , the set S of end nodes is 
updated to include the new nodes nob� and nob  and to 
exclude n,. From the set of live nodes L, the node from which 
the branching takes place is deleted in step 3 and the node 
nob� or nob  is added to the set only if the solution is feasible 
(step 4) but not integral with objective value is greater than the 
known integer solution (step 6). In addition to these, the 
algorithm will be terminated by emptying the set L if the 
integer approximated solution lies in the optimal hyperplane 
of the ILP (steps 5 to 8). Algorithm is illustrated using the 
following examples. 
 
4. EXAMPLES 

4.1 Example in which Optimum Solution of the ILP 

lie on the Optimal Hyperplane if the RLP 

Maximize / = :� + :  
Subject to  
 :� + : ≤ 7 
 2:� ≤ 11 
 2: ≤ 7  
 :�, : ≥ 0 and integers. 
 
The optimum solution to the RLP using simplex method is 

given by x� = ��
 , x = q

  and maximum z = 7. This is a non 

integral solution. But alternate solutions exist for this. The 
integer approximations of this RLP solutions are 
{)5,1*, )5,2*, )6,1*, )6,2*}. Here the set of feasible integer 
approximations Y�∗ = {)5,1*, )5,2*}. So the integer 
approximated solution is given by x∗ = )5,2* with z∗ = 7. 
Also the maximum possible objective function value zX = 7. 
Therefore z∗ = zX. So the integer approximated solution is the 
optimal solution of the ILP and hence no need to consider the 
Branch and Bound algorithm. Also this solution is a point on 
the optimal hyperplane of the RLP. 
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Hence in this case the optimal solution of the ILP lies on the 
optimal hyperplane of the RLP x� + x = 7. 
 
 
4.2 Example in which gcd of Cost Coefficients Unity 

Maximize / = :� + 2:  
Subject to  
 :� + : ≤ 7 
 2:� ≤ 11 
 2: ≤ 7  
 :�, : ≥ 0 and integers. 
 
The unique solution to the RLP at node 1 is given by x)�* =
tu

 , u
 v with maximum z =  �

 . Clearly it is not an integer 

solution. The integer approximations of this RLP solutions are 
{)4,4*, )4,3*, )3,4*, )3,3*}. Here the set of feasible integer 
approximations Y�∗ = {)4,3*, )3,3*}. So the integer 
approximated solution is given by x∗ = )4,3* with z∗ = 10. 
Also the maximum possible objective function value zX = 10. 
So the integer approximated solution is the optimal solution of 
the ILP. 
 
Therefore the optimum solution is given by x� = 4, x = 3 
with maximum z = 10 and so the optimum hyperplane is 
x� + 2x = 10. 
 
4.3 Example in which gcd of Cost Coefficients 

Greater than Unity 

Maximize z = 200x� + 400x + 300xq 
Subject to  
 30x� + 40x + 20xq ≤ 600 
 20x� + 10x + 20xq ≤ 400 
 10x� + 30x + 20xq ≤ 800  
 x�, x , xq ≥ 0 and integers. 
 
The unique optimum solution of the RLP at node 1 is given by 

x)�* = t0,  z
q , {z

q v with z =  qzzz
q  which is clearly non integral. 

The integer approximations are 
{)0,6,16*, )0,7,16*, )0,6,17*, )0,7,17*}. The set of feasible 
integer approximations Y�∗ = {)0,6,16*, )0,7,16*, )0,6,17*}. 
Therefore the integer approximated solution is given by 
x∗ = )0,7,16* with z = 7600. 
 
Now d = gcd)200,400,300* = 100. 
 
Hence the optimal objective value using RLP at node 1 is 

given by zX = | qzz
q } = 7666.  

But 100 ∤ 7666.  
 
Hence reduce the value to 7600 so that 100 | 7600. So finally 
zX = 7600. 
 

Here also zX = z∗. Hence the integer approximated solution at 
node 1 is the optimal solution to the ILP and hence no need to 
consider the Branch and Bound Algorithm. 
 
Therefore the optimum solution is given by x� = 0, x =
7, xq = 16 with maximum z = 7600 and so the optimum 
hyperplane of the problem is 200x� + 400x + 300xq =
7600. 
 
4.4 Example in which gcd of Cost Coefficients is 

Unity and Branch and Bound Algorithm Required to 

Obtain Solution 

Maximize z = 3x� + 4x  
Subject to  
 2x� + 4x ≤ 13 
 −2x� + x ≤ 2 
 2x� + 2x ≥ 1  
 6x� − 4x ≤ 15 
 x�, x ≥ 0 and integers. 
 
The unique optimum of the RLP at node 1 is given by 

x)�* = tu
 , q

 v with maximum z = qq
 , which is clearly non 

integral. The integer approximations are given by 
{)4,1*, )4,2*, )3,1*, )3,2*}. But the set of feasible solutions 

Y�∗ = {)3,1*}. Therefore x∗ = x∗
)�* = )3,1* with z∗ = z�∗ = 13. 

Now d = gcd)3,4* = 1. 
 
Hence the optimal objective value using RLP at node 1 is 

given by zX = |qq
 } = 16 and z∗ < zX. So we have to proceed 

with Branch and Bound Algorithm. 
 
Now by selecting node n� and branching variable x�, we can 
obtain subproblems at nodes n  and nq and on solving, 

x) * = t3, u
~v with z = 16 and x)q* is infeasible. Also 

x∗
) * = ∅ with z ∗ = −∞. Therefore the new zX = 15. Now by 

selecting node n  and branching variable x  we can obtain 
subproblems at nodes n~ and n{ and on solving x)~* = )3,1* 

with z~ = 13 and x){* = t{
 , 2v with z{ = q�

 . So z~∗ = 13 with 

x∗
)~* = )3,1* and z{∗ = 14 with x∗

){* = )2,2*. Therefore the 
new zX = 15, z∗ = 14 and x∗ = )2,2*. Finally by selecting 
node n{ and branching variable x�, we can obtain 

subproblems at nodes n� and nu and on solving x)�* = t2, �
~v 

with z� = 15 and x)u*  is infeasible. Also z�∗ = −∞ with 
x∗

)�* = ∅ and the new value zX = 14. Hence zX = z∗ and so the 
integer approximated solution in hand is the optimal solution 
of the ILP. 
 
Therefore the optimum solution is given by x� = 2, x = 2 
with maximum z = 14 and so the optimal hyperplane of the 
problem is 3x� + 4x = 14 
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CONCLUSIONS 

In this paper, a method to solve pure integer linear 
programming problems using integer approximated solution 
method is discussed. This method is very effective for 
problems whose gcd of cost coefficients is greater than unity. 
It can also be used to check whether a feasible point is an 
optimal solution of the ILP. Here the optimal hyperplane is 
identified using the idea of the linear Diophantine equations.  
To obtain integer approximated solution the procedure 
requires the solution of the RLP at each iteration. But any 
method which can give the integer approximations may reduce 
the computational efforts. This is a task worth consideration of 
future research and if it is possible, then this will be more 
effective in integer programming. 
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