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Abstract
The paper describes a method to solve an ILP by describing whether an approximated integer solution to the RLP is an optimal
solution to the ILP. If the approximated solution fails to satisfy the optimality condition, then a search will be conducted on the
optimal hyperplane to obtain an optimal integer solution using a modified form of Branch and Bound Algorithm.

Index Terms:. ILP, Linear Diophantine equations, Optimal hyperplane, Branch and Bound algorithm
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1. INTRODUCTION

Integer Linear Programming (ILP) problems belong &o
particular class of Linear programming Problems RLPin
LPP, the decision variables are assumed to benants, but
in ILP the decision variables are restricted sd thaan take
only discrete values. Many practical problems caa b
formulated as general Integer Programming Problants so
ILP problems have an outstanding relevance in nfiatgs.

Various researchers have studied about the applisatof
Integer Programming Problems. Brenda Dietrich [[gfdsses
its application in IBM, Melvin A. Breuer [6] discasthe
application in Design Automation, and Chui-Yen &tten [5]
discuss the application in Crew Scheduling Probl&ome
other problems which can be formulated as genetagéer
Programming Problems include transportation , gaised
assignment and manpower planning problem. So Intege
Programming technique is so useful in these ar@as.
because of the discreteness restriction on vagdh cannot
consider as an LPP. A general ILP can be defined as

Maximizez = cx
Subject to

Ax<b

x > 0 and integers,

Where ¢ is an n row vector of real entries, A ismrx n
matrix with real entries and b is an m column veabreal
entries.

Associated with each ILP, we can define relaxaRaf as
Maximizez = cx

Subject to
Ax<b
x = 0.

By definition, the feasible space of RLP contaims $olution
space of ILP and hence its optimal solution is ppes bound
for ILP optimal solution.

The ILP becomes computationally intractable witlergase
problem size and/or variable bounds. In any sedochan
optimal solution, early knowledge of a good solotits
important for reasonable computational effort. MdkP
solution methodology starts with RLP optimal in [h],
different ILP solution methods are given. In adiulitito these
methods, the hyperplane search methods are exglame
[2],[3] and [4]. But the most commonly used methas
Gomory’s Cuttingplane Method and Branch and Bound
Method. To apply any of these methods, the optinsotation
of the RLP is required. If the optimum solutiontbe RLP is
an integral one, then this solution can be consilleas the
optimum solution of the ILP. If the solution is nortegral,
further investigation is necessary to obtain thdinopm
integer solution.

In this paper, if the optimum solution of the RL® mon
integral, then some integer approximated optimumsifde
solutions of the ILP will be considered. But it cat be
ascertained that one of these solution is an opswiation to
the ILP.

Consider the objective hyperplane
Z C]X] =7

where eacl; € Z, which is a linear Diophantine equation in
integers. Letd = ged {cj,c; #0; j=1,2...... n}. It has an
integer solution if and only id|z. Also if a linear Diophantine
equation has an integer solution, then there vallirifinitely
many solutions for this equation [8].
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This paper aims to provide a test to examine thiemagity of

the approximated solution obtained from RLP to b@gtimal

solution of the ILP, using the concept of lineaophantine
equations. If it does not satisfy the optimalitynddion, then a
modification of Branch and Bound method is suggekdte
arrive at the optimal solution of the ILP.

In the next section some results are derived toyestga
computational procedure to obtain the optimal sofubf the
ILP using RLP. In section 3 an algorithm is develdor this
purpose and in section 4 examples are cited tdlegtathe
effectiveness of the algorithm.

2.BASICRESULTS

Without loss of generality, let the row vector c¢ tfe
definition of the ILP has only integer componenifs.the
components are not integers, then try to make thegers by
multiplying all components; with a suitable positive integer.
Since the decision variables x are also requiredetintegers
for an ILP,cyx; + X, + -+ ... ... ... CpXp, Should be an integer
for all integer values of; andx; forj = 1,2, ..........n.

Consider the optimum solution to the RLP sqy. Let z;p
denotes the optimum value of the objective functibnat is
zip = cxpp. If z* denotes the value of the objective function
corresponding to a feasible solution of the ILPeffh* is an
integer less than or equal2gs.

That isz* < cxyp.

Sincez” < z;p, letz" = |z.p], the greatest integer less than or
equal toz;p. Then consider the linear Diophantine equation
C1Xq + CoXy + e CnXp = Z°. Also let d=
ged{(cq,Cq) veevee v v Cp) /i # 0}, If d t 2%, there will not
exist any integer solution to the linear Diophaetequation.

In this case letz* = |z;p] — 1 and the same argument is
applicable for the new* also. Repeat the process until we get
an z* so that z* is an integer less than or equalzig and

d| z*.

Propositionl. Let z,, denotes the value of the objective
function corresponding to the optimum solution bé tiLP.
Thenz;p, < z* where z* is an integer defined as above.

Pr oof

Let z;, denotes the maximum objective value to the RLP.
Then clearlyz;p < zp

If possible assume,;, > z*

But by definition, z* < z; .

Thenz* < z;p < z;p

Let x;p denotes the optimum solution of the ILP so that
CXip = Z1p ) ) )

So the linear Diophantine equationc,x; + c;x, +
e e CpXy = Zpp has a solution;p. Hence there will exist

infinitely many integer solutions to this equatiamd d =
ged{(cy, €y wvvevvee e ) Jc; # 0} divides zp. Thus z* <

z;p < z;p @ndd| z* which is a contradiction to the assumption
of z* and s@;p < z*.

Proposition2. If z* < z;p, (strict inequality) then there is no
integer solution to the ILP lie between the hypangks
cx = z;p andex = z*.

Pr oof

Givenz* < z;p.

If possible assume an integer point (3qy is lie between the
given hyperplanes so thatx, <z, and cx; > z*. Let
cx, = z,. Then the linear Diophantine equatianx; +
CoXg + v+ Cpx, = 2, WIill  have infinitely many
integer solutions angcd | z,, sincex,, is an integer solution
of the equation. Thus we have an integieso thatz* < z;, <
z;p Which is a contradiction and so the assumptiomrang.

Proposition3. Let the optimum solution to the RLP is unique
and non integral. Also letz,, denote the value of z
corresponding to this optimum solution. Thugp. If the
optimum solution to the ILP exists, then there €xjs< z;p
such that the optimum solution to the ILP lies dre t
hyperplanex = z,.

Pr oof
Let x;p denote the optimum solution of tHeLP. Let S;
denote the set of feasible solutions to the RLPenT$y n
{x / cx = z;p} is the singleton set,p. It is also given that
xp IS nNon integral. Lef denotes the feasible solutions to the
ILP which is non empty.
Now
SC S, xp€S;andx;p € S.
AlsoS; n{x/cx =z} = xpp.
SoSn{x/cx=2z,p}=¢.

Also z;, gives an upper bound for ILP. So the value of the
objective function for the ILPz;, should be strictly less than
z,p and the optimum solution to the ILP will lie oneth
hyperplanex = z,p.

Remark: If z,p is an integer, the solutiatyp is non integral
and if there exist alternate optimum solution foe 1LP (that

is x;p is not unique), then the optimum solution to the |
can lie on the optimum hyperplane of the RLP. Tisathe

optimum solution to the ILP can lie on the hypengla
cx = z;p. An example in the next section illustrates thistf

Theoreml. Letz* be an integer defined as in section 2. et
denote the set of all feasible solutions to the.IlfP SN
{x / cx = z*} is non empty, then the optimum solution to the
ILP will lie on the hyperplanex = z*.

Proof
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Let z,, denote the value of the objective function
corresponding to the optimal solution of the RLMefl the
hyperplanecx = z;p is the optimum hyperplane for the RLP.
Also by definition ofz*, z* < z,p.

Assumez* = z;p.

It is also given thatSn{x/cx=z"#¢}. So Sn

{x / cx = z;p} # ¢. Hence there exist an integer point in the
optimum hyperplane of the RLP which is a feasiloleitson of
the ILP. Also the objective function value of RLBr fits
optimal solution is an upper bound for the ILP oati
solution. So the integral point must be optimal.

Now assumez® < z;p. Then by proposition2, there is no
feasible solution to the ILP lying between the hptenes

cx =2z;p andcx =z*. SO no hyperplane containing integer
solution to the ILP exists between these two hyjaeegs.
Now sinceSn{x/cx=z"# ¢}, it is possible to find a
feasible integer point on the hyperplane which giveluez*

for the objective function. From propositionl tbptimum
solution to the ILP can give objective functionwalless than
or equal toz*. So clearly the integer point on the hyperplane
cx = z" is the optimum solution to the ILP.

Thus in both cases, the optimum solution to the lleRn the
hyperplanex = z*.

3. SOLUTION METHODOLOGY

Using the results derived from the last sectioig ftossible to
check whether an integer approximated solutionht RLP
gives the optimum solution for the ILP. If it faite give the
optimum solution, a modified form of Branch and Bdu
algorithm is suggested to obtain the optimum sofutFor the
development of the algorithm, it is necessary tplar the
procedure to obtain

1. Integer approximated solution to the RLP sub

problems
2. An objective hyperplane for the ILP.

3.1 Integer Approximated Solutions to an RLP Sub
problem

Given RLP is an LPP. To obtain the integer apprated
solution, first of all solve this LPP and find tkelution. Let
the solution ax® and the maximum objective value gs If
x® satisfies the integer requirement, then considér= x®
as the integer approximated solution with objectixsdue
z; =z, while if x¥ is infeasible, there is no integer
approximated solution. So considef) as feasible and non
integral, consider the integer approximated sofutias
follows,

For each component of x®, consider]x;| and[x;| and then
all combinations of these components to obtain itlieger
approximated solutions. (That is there are two c®|x, |
and(x, ] for x; and two choicegx,| and[x,] for x, and so on.
If some particular componeny, is an integer, then there is
only one choice for this component. So there wélldtmos2™
approximated solutions). Then consider the febtyiluf each
of these points. If a particular point is feasiltleen put this
point in the sel;, consider the sé&f = Y;\{Y; N Y} where Y
is the set of integer approximated solutions. afigiy = @. If

Y =, then setZ’ = -0 and x = ¢. Otherwise find
Z: = max(cx/x € Y7) andx® = {x € Y;/cx = Z7}. Then set
Y=YUY;.

Thenx® is the integer approximated solution to the it su
problem with the objective function valZie.

3.2 Search for the Optimal Objective value and the
Optimal Hyperplane

Let x;p be the optimum solution of the RLP with objective
valuez;p (That iscx;p = z;p). Also let d denote the gcd of
the cost coefficients. Letp denote the maximum value of the
objective function for the ILP. Thesjp will be an integer such
thatz;p < |z;p] andd|z;p.hence the integer can assume so
thatz = [z;p]. If d tZ then reduce the valugby unity and
check whether it is divisible by d. If not redut¢e tvalue oz
by unity again and so on. Hence the maximum passialue
of z for the ILP is given by andcx =7Z is a hyperplane
having infinitely many integer points on it. i, is unique
then z < z;p. If any of the integer feasible point of the ILP |
on this hyperplane, therx =z should be the optimal
hyperplane and sgp = z. If none of the feasible integer oint
lie on the hyperplane, then we have to reduce #ieew to
obtain the optimal hyperplane ang. In the algorithncx =z
will be considered as the optimal hyperplane andvhith an
integer point is searched. Hence this proceduréammgphow
to obtain the maximum possible valmevhenz;, and gcd of
the cost coefficients of the LPP are known.

3.3 Modification to Branch and Bound M ethod

Now it is possible to suggest a modification to Branch and
Bound algorithm. The problem to be solved is anirgkbger
linear programming proble, with maximization objective.
Its linear programming relaxation is call@g. It is assumed
that a specific node and branch selection stratduyee been
chosen. The different strategies are given inThg algorithm
is initialized with noden,. Takei=1 (That is we are
considering the first LPP), and= @ (there are no integer
approximated solutions are known). Obtain optin@ltson
and integer approximated solution of the RLP atenbdUse
the procedure in section 3.1 with= 1). Let x(Pdenote its
optimum solution with objective function value,. Also let
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xil) with objective valuez; is the integer approximated
solution. If x® has only integer components, then it is the
optimal solution of the ILP, procedure stops hdfreerf the
optimum solution of the ILP will bep = x with z;p = z,).
Now if x® is not integral, then set = z; andx* = xV.
Also let d = gcd{(cq,C5 wv vevwoe . Cy) /€ # 0} Then obtain
the maximum possible objective function valuasingz,and
gcd d (using the procedure in section 3.2). now # z*, then
the integer approximated solutiaf is the optimum solution
of the ILP with objective value® and cx = z* is the optimal
hyperplane and procedure terminates. #f* <z, then by
settingS = L = {n;}, z;p = z; andxp = x, proceed with the
Branch and Bound algorithm.

3.4 Algorithm

Step 1: IsL = @?

If YES: Isz* > —oo, then the solution;, = x* with objective
value z;p, =z* is optimal andcx =z* is the optimal
hyperplane.

Otherwise the integer programming problem has @silfde
solution.

If NO: Go to step 2.

Step 2: Choose some nodg € L (according to some
prescribed criterion) with solutiotf® and objective valug,.

Step 3: Branch on some variabig (according to some
prescribed criterion) to the nodes, ; with x; < [xj] andn, .,
with x; > [xj]. SetL = L\{n;} andS = S U {n,, 1, ny4 23\

{n;}. Solve the LPP at,,, andn,,,. The results are solutions
xD andx©*2) with objective values,,, andz,, and the

improved integer approximated solutions (if it &xi t+1)
andx"Pwith objective valueg;,, andz;,, respectively.

Step 4: Is x**D feasible?
If YES: Go to step 5.
If NO: Go to step 8.

Step 5: Iszfy, = 27

If YES: Setx* = x*Y; z* = z;,,; L =0 and go to
step 1.

If NO: Go to step 6.

Step 6: Doesx** 1V satisfy the integrality requirement?
If YES: Go to step 7
If NO: Isz;pq > 2%?
If YES: SetL := L U {n;,,} and go to step

If NO: Go to step 8
Step 7: Iszpq > 277

If YES: Setx* = x**D, z* = z,,, and go to step 8.
If NO: Go to step 8.

Step 8: Ist = an odd number?

If YES: Sett =t + 1 and go to step 4.

If NO: Considerz;, = max {z;/n; € L} and go to
step 9.

Step 9: Iszjp = z;p?

If YES: Sett =t + 1 and go to step 1.

If NO: Setz;, = z/p, Obtain the new objective
function valuez for thisz,p, go to step 10.

Step 10: Isz* = 27
If YES: SetL = @ and go to step 1.
If NO: Sett =t + 1, go to step 1.

The key of the algorithm is the updating procedfréne sets
S and L. In each step when the procedure brancbessome
noden; to two nodesy,, andn,,,, the set S of end nodes is
updated to include the new nodaeg,; and n.., and to
excluden;. From the set of live nodes L, the node from which
the branching takes place is deleted in step 3thadnode
n.,; Orn.,, is added to the set only if the solution is fekesib
(step 4) but not integral with objective value ie@er than the
known integer solution (step 6). In addition to gbge the
algorithm will be terminated by emptying the setifLthe
integer approximated solution lies in the optimgpdérplane
of the ILP (steps 5 to 8). Algorithm is illustrateding the
following examples.

4. EXAMPLES
4.1 Example in which Optimum Solution of the ILP
lie on the Optimal Hyperplaneif the RLP

Maximizez = x; + x,
Subject to
Xy +x, <7
2x, <11
2x, <7

X1, %, = 0 and integers

The optimum solution to the RLP using simplex meths
given byx, = 12—1 Xy = % and maximumz = 7. This is a non
integral solution. But alternate solutions exist fbis. The
integer approximations of this RLP solutions are
{(5,1),(5,2),(6,1),(6,2)}. Here the set of feasible integer
approximations Y; ={(5,1),(5,2)}. So the integer
approximated solution is given by = (5,2) with z* = 7.
Also the maximum possible objective function value 7.
Thereforez* = z. So the integer approximated solution is the
optimal solution of the ILP and hence no need tosaer the
Branch and Bound algorithm. Also this solution ipaint on
the optimal hyperplane of the RLP.
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Hence in this case the optimal solution of the lieB on the
optimal hyperplane of the RLB +x, = 7.

4.2 Examplein which gcd of Cost Coefficients Unity

Maximizez = x; + 2x,
Subject to
X1 +x, <7
2x; <11
2x, <7
X1, %, = 0 and integers.

The unique solution to the RLP at node 1 is givgrx® =

7 7 . . 21 . e .

(E‘E) with maximumz = —-. Clearly it is not an integer
solution. The integer approximations of this RLRusons are
{(4,4), (4,3),(3,4),(3,3)}. Here the set of feasible integer
approximations Y; ={(4,3),(3,3)}. So the integer
approximated solution is given by = (4,3) with z* = 10.
Also the maximum possible objective function vafie 10.

So the integer approximated solution is the optisodition of
the ILP.

Therefore the optimum solution is given Ry =4, x, =3
with maximumz = 10 and so the optimum hyperplane is
X1 + ZXZ = 10.

4.3 Example in which gcd of Cost Coefficients
Greater than Unity

Maximizez = 200x; + 400x, + 300x;
Subject to
30x, + 40x, + 20x; < 600
20x; + 10x, + 20x; < 400
10x, + 30x, + 20x; < 800
X1, X, X3 = 0 and integers.

The unique optimum solution of the RLP at node given by
x® = (0?5?0) with z = 23200 which is clearly non integral.
The integer approximations are
{(0,6,16), (0,7,16),(0,6,17),(0,7,17)}. The set of feasible
integer approximationsY; = {(0,6,16), (0,7,16), (0,6,17)}.
Therefore the integer approximated solution is givey
x* = (0,7,16) with z = 7600.

Now d = gcd(200,400,300) = 100.

Hence the optimal objective value using RLP at nddes
given byz = 12300 = 7666.

3

But 100 t 7666.

Hence reduce the value to 7600 so ¥ | 7600. So finally
Z = 7600.

Here alsaz = z*. Hence the integer approximated solution at
node 1 is the optimal solution to the ILP and hemaeneed to
consider the Branch and Bound Algorithm.

Therefore the optimum solution is given by =0,x, =
7,x3 = 16 with maximumz = 7600 and so the optimum
hyperplane of the problem i200x; + 400x, + 300x; =
7600.

4.4 Example in which gcd of Cost Coefficients is
Unity and Branch and Bound Algorithm Required to
Obtain Solution

Maximizez = 3x, + 4x,
Subject to

2%, +4x, <13

—2x; +x, <2

2%, +2x, 21

6%, — 4x, < 15

X1,X, = 0 and integers.

The unique optimum of the RLP at node 1 is given by

7 3 . . 33 . .
xM = (E’E) with maximumz = =, which is clearly non

integral. The integer approximations are given by
{(4,1),(4,2),(3,1),(3,2)}. But the set of feasible solutions
Y7 = {(3,1)}. Thereforex* = x = (3,1) withz* = z} = 13.
Nowd = gcd(3,4) = 1.

Hence the optimal objective value using RLP at nades

given byz = [%J =16 andz* <z So we have to proceed

with Branch and Bound Algorithm.

Now by selecting node; and branching variable,, we can
obtain subproblems at nodes, and n; and on solving,

x(2)=(3,£) with z, =16 and x® is infeasible. Also

x® = ¢ with z; = —co. Therefore the new = 15. Now by
selecting noden, and branching variable, we can obtain
subproblems at nodes, andns and on solvingg® = (3,1)

with z, = 13 andx® = (£,2) with z; = 2. Soz; = 13 with

x® = (3,1) and z; = 14 with x® = (2,2). Therefore the
new z = 15, z* = 14 and x* = (2,2). Finally by selecting

node ng; and branching variablex;, we can obtain

subproblems at nodeg andn, and on solving® = (2,;)

with z, = 15 and x is infeasible. Alsoz; = —co with
x£6) = @ and the new valug = 14. Hencez = z* and so the

integer approximated solution in hand is the optistution
of the ILP.

Therefore the optimum solution is given Ry = 2, x, = 2
with maximumz = 14 and so the optimal hyperplane of the
problem is3x; + 4x, = 14
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CONCLUSIONS

In this paper, a method to solve pure integer linea
programming problems using integer approximateditimi
method is discussed. This method is very effective
problems whose gcd of cost coefficients is gretitan unity.

It can also be used to check whether a feasiblat psian
optimal solution of the ILP. Here the optimal hyplane is
identified using the idea of the linear Diophantatgiations.

To obtain integer approximated solution the procedu
requires the solution of the RLP at each iteratiBaot any
method which can give the integer approximationy reduce
the computational efforts. This is a task worthgidaration of
future research and if it is possible, then thidl Wwe more
effective in integer programming.
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