
IJRET: International Journal of Research in Engineering and Technology     eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 07 | Jul-2013, Available @ http://www.ijret.org                                                                                37 

AN AXISYMMETRIC  BENDING AND SHEAR STRESS ANALYSIS OF OF 

FUNCTIONALLY GRADED CIRCULAR PLATE BASED ON 

UNCONSTRAINED THIRD ORDER SHEAR DEFORMATION THEORY 

VIA DIFFERENTIAL QUADRATURE METHOD 
 

HamadM.H1., F. Tarlochan2 

Center for Innovation and Design, College of Engineering, UniversitiTenagaNasional, 43009 Selangor 
 

Abstract 
In this study, based on the unconstrained third order shear deformation theory (UTSDT), numerical analysis of an axisymmetric 
bending and stresses of circular plate are investigated. The material properties are considerd to graded through the thickness of the 
verticlecoordinate, and follow a simple power of volume fraction of the constituents.governing equations are derived and DQM is 
used as an efficient numerical method for solving the differential equations.Two types of boundary conditions under the influence of 
the bending and body force are studied. The validation of the results is done by a comparison with another study ,which available in 
the literature and found good agreement between two studies. 
 
Index Terms:bending,shearstress,circularplate,UTSDT,GDQM. 

-----------------------------------------------------------------------***----------------------------------------------------------------------- 

1. INTRODUCTION  

Thick and thin  Circular disk in structured componentsplays a 
major role in engineering applications related to this area is 
the static  analysis  thetypes of plates which arenotably  crucial  
in their design ranging from automotive railway brake systems 
to disks which constitute  vital components particularly in 
turbo machines. Functionally,graded materials (FGMs) were 
first introduced in 1989 [1] whereby a number of researchers, 
because interested to study them . 
 
In the past decade , many of the studies which carried out  on 
the FGMs disks concentrated on the conventional plate and the 
first order shear  deformation theories . The conventional plate 
theory  (CPT) furnishes accurate and reliableanalysis  for this 
plate . As the disk thickness increases CPT over predicts 
stresses response, because the transverse shear deformation 
and rotary inertia  effects are neglected  .So there a number of 
shear deformation  theories  used to analyze moderately thick 
plate ,  first order theory and third order theory were 
developed to incorporate the shear deformation effects , in the 
first order shear deformation theory (FSDT), the constant 
shear stress condition through thicknesses violates the 
statically condition of zero shear stress at the free surface . So 
its need for shear correction factor to modify the shear forces 
.The third order shear deformation theory (TSDT )predicts 
parabolic variation of shear stress through the thickness. 
Although the use  of higher order plate theory leads to more an 
accurate prediction  of the global response quantities such as 
shear forces , deflections  strain and stresses , it requires much 

computation  effort . Furthermore  the use of the (TSDT) by 
Reddy is constrained , because it considers the shear stress 
vanishes  on the top and bottom surfaces of the plate , but this 
limitation is solved by the unconstrainedthird  order shear 
deformation theory (TSDT) by Leuny [2].  
 
In past decades  several studies published on the static analysis 
of FGMs circular disks  Reddy et al. [3] Study relates to ax 
symmetric bending of functionally graded circular and annular 
plates whereby the first order shear deformation plate theory 
was used. Ma and Wang [4] analyzed further by discussing the 
relationship between axisymmetric bending and buckling 
solutions of FGM circular plates. Third-order plate theory and 
classical plate theory were demonstrated and discussed in 
detail in their study. In addition, asymmetric flexural vibration 
and an additional stability analysis of FGM circular plates was 
included in thermal environment by using finite element 
techniquespresented by Prakash and Ganapathi [5]. Also, 
Three-dimensional free vibration of functionally graded 
annular plates whereby boundary conditions were different 
using a Chebyshev-Ritz method was also studied by Dong [6]. 
Malekzadeh et al. [7] Also showed how in thermal 
environment in-plane free vibration analysis of FGM thin-to-
moderately thick deep circular arches. Third-order shear 
deformation theory was used by Saidi et al. [8] To analyze 
axisymmetric bending and buckling of thick functionally 
graded circular plates. Subsequently, fourth-order shear 
deformation theory was researched by Sahraee and saidi [9] to 
study axisymmetric bending of thick functionally graded 



IJRET: International Journal of Research in Engineering and Technology     eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 07 | Jul-2013, Available @ http://www.ijret.org                                                                                38 

circular plates. Besides this, Sepahi et al. [10] Analyzed the 
effects of big deflection of thermo-mechanical loaded annular 
FGM plates on nonlinear elastic foundation using the 
differential quadrature method. Geometrically nonlinear post-
buckling of an imperfect circular FGM plate was studied by Li 
et al. [11] who found both mechanical load and transverse 
non-uniform temperature rise. A study conducted by 
Malekzadeh et al. [12] resulted in three-dimensional free 
vibration of thick functionally graded annular plate in thermal 
environment by differential quadrature technique. An 
investigation of nonlinear analysis of functionally graded 
circular plates was conducted by Nosier and Fallah [13] It was 
related to asymmetric transverse loading, according to the 
first-order shear deformation plate theory based on von 
Karman non-linearity. In addition, Sburlati and Bardella [14] 
studied three-dimensional elasticity solution of functionally 
graded thick circular plates. Correspondingly, Golmakani and 
Kadkhodayan [15] studied axisymmetric nonlinear bending 
analysis of annular functionally graded plate. The study used 
third-order shear deformation theory. A precise closed form 
answer for free vibration of circular and annular moderately 
thick functionally graded plates of first-order shear 
deformation theory was studied by Hosseini-Hashemi et al. 
[16] Nie and Zhong’s study [17] was on frequency analysis of 
multi-directional functionally graded annular plates using state 
space differential quadrature method. It was based on the 
three-dimensional theory of elasticity. It must be noted that 
direct displacement method was conducted by Yan et al. [18] 
with the aim to represent the axisymmetric bending of FG 
circular plates under transverse loads that were arbitrary. 
Another theory using Mindlin’s plate theory about free 
vibration was investigated by Ebrahimi et al [19]. This study 
was concerned about moderately thick shear deformable 
annular functionally graded by Pilate. The effects of coupling 
between in-plane and out-of-plane vibrating modes of smart 
functionally graded circular/annular plates was examined by 
Hashemi et al. [20]. Nonlinear bending and post-buckling of a 
functionally graded circular plate was examined by Ma and 
Wang [21] whereby the conditions were mechanical and 
thermal loading. Bayat et al [22 ]used first-order shear 
deformation theory to study the thermal elastic response of 
rotating disk with small and large deflections, and presented 
the results with analytical solutions. 
 
Viola et al. [23] Used  a2D unconstrained third order shear 
deformation  theory (UTSDT)  in static analysis of moderately 
thick functionally graded cylindrical shells subjected  to 
mechanical  loadings. Also Viola et al. [24] Employed 
(UTSDT) for analyzing thedynamicbehaviour of completely 
doubly –curved laminated shells and panels . 
 
It is clear from the above  literature  most of the studies which 
carried out on the static  analysis of the circular disks based on 
the first order shear deformation  theory and few of them  
based on the third order deformation  theory which is solved 
analytically for limited boundary conditions. On the other 

hand the numerical technique presenting static analysis for the 
circular disks based on high unconstrained third order shear  
deformation  theory is quite poor .As well as , the use of the 
shear function model which is used by [24] can by applied to 
the displacement field of  the circular disk . 
 
In the present study,unconstrainedthird order shear 
deformation  theory is used for axisymmetric static analysis of 
functionally graded clamped and rolatingcirculer plate .The 
circular plate is subjected to two types of loading , bending 
and body force . The mechanical properties are assumed to be 
graded in the thickness direction according to  a simple power 
law distribution  in terms of the volume fraction of the 
constituent . By the principle of minimum total energy, the 
governing  equations of equilibrium are obtained according to 
the  unconstrained third order shear deformation  theory . By 
employing the differential quadrature method as a simple but 
accurate  and fast convergent method to discretizethe 
equilibrium equations and  to implement the boundary 
conditions . The effects of body force parameters  ,the material 
constant, and the geometric parameters of circular plate on the 
stresses and deflection response are is studied in detail.  
 
2. PROBLEM STATEMENT 

Consider a FG circular disk with thickness( h )  and radius ( a 
) , axisymmetric with respect to the z-axis as shown in fig.1 
and it is subjected  to uniform  transverse pressure in case of 
clamped condition,whilein case of roller support condition, it 
subjected to both uniform pressure  and body force  
 
The mid–plane of the plate refers to the  cylindrical coordinate 

system( ), ,r zθ
 in the radial ,circumferential and axial 

directions respectively. 
 

 
 

Figure 1:FG circular disk with thickness  (h)  and radius (a) 
 
2. 1- Mechanical Properties OfFGCircular Plate 

Types  

Typically FGMs  are  made of  a mixture of the two 
constituents . In this research  it  is assumed that the FGMs are  
made of  a mixture of ceramic and metal constituents.the 
material properties  of the FG plate vary continuously and 
smoothly in thickness direction  z and are functions of volume 
fraction of constituent materials  
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( ) ( )P z Pm Pc Vm Pc= − +
( 1 ) 

 
Where: 

( )P z
:material property at location z through thickness.m and 

c  denotes the metallic and ceramic constituents respictivlly . 
 
Vm :volume fraction of metal  
 

2

2

p

m
h z

V
h

− =  
  ( 2 ) 

 
Where: 

z: thickness coordinates ( )2 2h z h− ⁄ ≤ ≤ ⁄
 

p : material constant. 
 

As the material constant is equl to zero( )0p =
, or equal to 

infinity  ( )p = ∞
 , the homogeneous  isotropic material is 

obtained as a specializ case of functioaly  graded material . in 
fact , from equation (2) it possible to obtaian : 
 

( )0 1, 0m c mp V V p z p= → = = → =
 

 

( )0, 1m c cp V V p z p= ∞ → = = → =
 

 
Fig.2 show that material profile through the FG plate for 
various of  p. 
 
According to relution (1), the elastic modulur E and density ρ 
to be varied according to the  above equation . andpoisson’s 
ratioυ is assumed to be constant. 
 

( ) ( )m C m cE z E E V E= − + +
( 3 ) 

 

( ) ( )m C m cz Vρ ρ ρ ρ= − +
( 4 ) 

 
3. GOVERING EQUATIONS 

Based on the unconstrained thired–order shear deformation 
theory (UTSDT) ,displacement field in the cylindrical 
coordinate system can be written as : 
 

( ) ( ) ( ) ( ) ( ) ( )1 2,  U r z u r f z r g z rφ φ= + +
( 5 ) 

 

( ) ( ),w r z w r=
( 6 ) 

 
Where  : u ,w are the displacements of points on the middle 
plane (z=0)in the radial and vertical direction respictivly.  

 

1φ
:smalltransrverse normal rotation  about the θ -axises 

2φ
: smalltransrverse normal higher order rotation about θ -

axises 

( ) ( ),f z g z
are shear functions. 

 
From the previous[23], the displacement field has been 
improved by taking into consideration shear functions along 
the thinckess . indeed ,the model for the shear function in this 
study has taken from previous work[24]. 
 
Strain- displacement relations: 
 

( )3 31 2
rr

d ddu
z z z

dr dr dr

φ φε α α= + − −
(7a) 

 

( )3 3
1 2

1 1 1
 u z z z

r r rθθε α φ α φ= + − −
(7b) 

 

( )2 2
 1 21 3 3rz

dw
z z

dr
γ α φ α φ= − − +

 (7c) 
 

0,  0 ,  0r z zθ θγ γ ε= = =  
 
Stress-strain relations 
 

r 11 12 r

θ 12 22 θ

rz 66 rz

σ 0 ε

σ 0 ε

τ 0 0 γ

Q Q

Q Q

Q

    
    =    
         ( 8 ) 

 
Where : 

( )
( )11 22 12 112

,
2 1

E z
Q Q Q Qυ

υ
= = =

+
 

 

( )
( )66

E z

2 1
Q

υ
=

+
 

 
The total potential energy of circular plate: 

fΠ U V= + ( 9 ) 
 

a h /2

r r θ θ rz rz

0 h /2

U 2π σ ε σ ε τ γ rdzdr
−

= + +  ∫ ∫
( 10 ) 
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2 2 2 2
1 2 1

0

2 2 2 2
3 1 3 2

2 (

)

a

fV r u r

r r w rq w dr

π ρ ω δ ρ ω δφ

αρ ω δφ αρ δφ δ

= − +

− − +

∫

(11) 
 

Where : 
Π, , fU V

are the total potential energy , strain energy and the 
potential energy of the body force and pressure load 
respectively. 
 

By the principle of minimum total energyΠ 0δ =  
 

( )

( ) ( )

( )

( )

( )

2 2
1

2 2
3 1 1

0

2 2
3 2

)

3
0

3

r

r r r

a
r

r r

r r

d
rN N r u

dr

d d
rM rp M p r

dr dr
rR

dr
r

d
rp p rR r

dr

d
r rq w

dr

θ

θ θ

θ

ρ ω δ

α α φ

α

αρ ρ ω δφ

α α α αρ ω δφ

φ δ

−

  − + − +  
  
 

(− + + − + − 
 

+   = − + 
  
 − + − 
  
 
  +    

∫

   (12) 
 
Where: 

r θN , N :Stress resultants 

r θM ,M :Stress couples  
, rp pθ :higher order stress couples  

rφ :transverse shear resultant 

rR : higher order shear resultant 

1, 2 3,ρ ρ ρ
: constant  proportional to the mean ,first and third 

moment of the density  along the thickness. 
 

( )
/2

3

/2

( ,  ,  ) 1, ,
h

r r r r

h

N M P z z dzσ
−

= ∫
 (16a) 

 

( ) ( )
/2

3

/2

, ,  1, ,
h

h

N M P z z dzθ θ θ θσ
−

= ∫
(16b) 

 

( ) ( )
/2

2

/2

,  1,
h

r r rz

h

R z dzφ τ
−

= ∫
(16c) 

 

( ) ( )( )
/2

3
1 2 3

/2

, , 1, ,  
h

h

z z z dzρ ρ ρ ρ
−

= ∫
(16d) 

From eqs. (7),(8) and (16), one can obtain the following 
relations: 
 

( )

11

1 2
11 11 1 11 2

1

1 1

r
du

N A u
dr r

d d
B E E

dr r dr r

υ

φ φα υ φ α υ φ

 = + + 
 

   − + − +   
    (17a) 

 

( )

11

1 2
11 11 1 11 2

1

1 1

du
N A u

dr r

d d
B E E

dr r dr r

θ υ

φ φα υ φ α υ φ

 = + 
 

   + − + − +   
    (17b) 

 

( )

11

1 2
11 11 1 11 2

1

1 1

r
du

M B u
dr r

d d
D F F

dr r dr r

υ

φ φα υ φ α υ φ

 = + 
 

   + − + − +   
    (17c) 

 

( )

11

1 2
11 11 1 11 2

1

1 1

du
M B u

dr r

d d
D F F

dr r dr r

θ υ

φ φα υ φ α υ φ

 = + 
 

   + − + − +   
    (17d) 

 

( )

11

1 2
11 11 1 11 2

1

1 1

r
du

P E u
dr r

d d
F H H

dr r dr r

υ

φ φα υ φ α υ φ

 = + + 
 

   − + − +   
    (17e) 

 

( )44 1 44 1 23r
dw

Q A D
dr

φ α φ φ + − + 
 

=
  (17f ) 

 

( )44 1 44 1 23r
dw

R D F
dr

φ α φ φ + − + 
 

=
(17h) 

 
Where: 

11 11,  11 11 11 11, , , , A B D E F H
: are the circulaer disk stiffness 

coefficients  
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( )
( )

( ) ( )
11 11,  11 11 11

/2
2 3 4 6

2
/2

, , , 

1, , , , , 
1

h

h

A B D E H

E z
z z z z z dz

υ−

=

−∫
 (18a) 

 
 

( ) ( )
( ) ( )

/2
2 4

44 44 44

/2

, ,  1, , , 
2 1

h

h

E z
A D F z z z dz

υ
−

=
−∫

 (18b) 
 
From equation (12) , the equilibrium equations are  

uδ : 
 

( ) 2 2
1 0r

d
rN N r

dr θ ρ ω+ − =
 (19a) 

 

1 :δφ
 

 

( ) ( )

( )
 

2 2
2 3

3

0

r r r r
d d

rM rP M P rQ rR
dr dr

r

θ θα α α

ρ αρ ω

− − + − + +

− =
        (19b) 

 

2 :δφ
 

 

( ) 2 2
 3 3 0r r

d
rP P rR r

dr θα α α αρ ω− − + =
(19c) 

 

:wδ  
 

( ) 0r
d

rQ rq
dr

+ =
 (19d) 

 
Equilibrium equations in terms of displacements: 
 

( ) ( )

( ) ( )

22
1

11 11 11 11 112 2

1
11 11 11 11

2
2 22 2

1 11 11 11 2 12

1

1 1
0

dd u du
A A A u B E r

dr rdr dr
d

B E B E
dr

d d
E E E r

r dr
r

rdr

r
φα

φα α

φ φφ α α α φ ρ ω

+ − + − +

− − − +

− − + + =
 

      (20a) 
 

( ) ( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )
( ) ( )

2

11 11 11 11 11 112

2 1
11 11 11

2 2
11 11 11 44 44 44 1

2
2 2

11 11 2

2 2 22
11 11 11 11 44 44 2

2 2
44 44 2 3

1
 

2

1
2 6 9

1
3 9

3

d u du
B E r B E B E u

dr rdr
d

D F H
dr

D F H A D F r
r

d
F H r

dr
d

F H F H D F r
dr r

dw
A D r

dr

α α α

φα α

α α α α φ

φα α

φα α α α α α φ

α ρ ρ ω

− + − − − +

− +

 − − + + − + − 
 

+

 − + + + + + 
 

− + −− 0=

     (20b) 
 
 

( )

( ) ( ) ( )

22
1

11 11 11 11 112 2

1
11 11 11 11 44 44 1

2
1 1

11 11 11 442

2 2
2 44 3

1
 

1
  3 9

1
 9

3 0

dd u du
E E E u F H r

dr rdr dr
d

F H F H D F r
dr r

d d
H r H H E r

dr rdr

dw
D r r

dr

r
φα

φα α α φ

φ φα α α α

φ αρ ω

+ − +

 + + − + + − 
 

 − − + + 
 

− + =
 

     (20c) 
 

( ) ( )

( ) ( )

1
44 44 44 44 1

2
2

44 44 2 44 2

3 3

3 3

0

d
A D r A D

dr

d d w
D r D A r

dr dr
rq

φα α φ

φα α φ

− + − −

− + +

=  (20d) 
 
Using the following dimensionless parameters for simplicity . 

 

r
R

a
=

,

w
W

h
=

  ,
2

uh
U

a
=

  ,ϕ φ=   ,

h

a
δ =

  ,

6
11

1
11

A h

H
η =

  , 
 

5
11

2
11

B h

H
η =

  , 

4
11

3
11

D h

H
η =

, 
 

3
11

4
11

E h

H
η =

 ,

2
11

5
11

F h

H
η =

  ,

6
44

6
11

A h

H
η =

  ,

4
44

7
11

D h

H
η =

  , 
 

2
44

8
11

F h

H
η =

 
 



IJRET: International Journal of Research in Engineering and Technology     eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 07 | Jul-2013, Available @ http://www.ijret.org                                                                                42 

:Q pressure parameter 
 

6

11

*h q
Q

H
=

 
 

:ζ bodyforec parameters 
 

7 2
1

1
11

h a

H

ρ ωζ =
 

 
8 2

2 3
2

11

( )h

H

ρ αρ ωζ
α

−=
 

 
4 2

3
3

11

4

3

h

aH

ρ ωζ =
 

 
the equations of  motion in dimensionless form are: 
 

2 2
1 1

1 1 1 2 4 2 42 2

2
22 2

2 4 1 4 4 4 2 12

1 4 4

3 3

4 1 4 4 4 1

3 3 3 3 12

d U du d d
R U R

dr r dRdr dR

d d
R R

R dRdR

ϕ ϕη δ η δ η δ η η η η

ϕ ϕη η ϕ η η η ϕ ζ

   + − + − + − −   
   

 − − − + = − 
   

      (21a) 
 

( )

2

2 4 2 4 2 42

3 52
1 1

3 5 3 5 1 52
6 7 8 2

2
2

52

4 4 4 1
 

3 3 3

8 16 1

3 98 16 8 16 8 16

3 9 3 9 3 91
8 16

8 16

3 9

d U dU
R U

dR rdR

Rd d
R

dRdR R

d d
R

dR

η η δ η η δ η η δ

η η
ϕ ϕη η η η ϕ η

η η η
δ

ϕ ϕη

     − + − − − +     
     

  − + +  
       − + + − + − − −           − + 

  

 − − 
 

( ) ( )2
5 7 8 2 6 72

2
2

8 16 1 1
4 16 4

3 9

1
 

R
dR R

dw
R R

dR

η η η ϕ η η
δ

ζ
δ

  + − + + − +  
  

=−

(21b) 
 

( )

22
1 1

4 4 4 5 52 2

2
2 2

5 7 8 12 2

2
8 2 7 32

1 4 4
 

3 3

4 1 1 4 4
3 12

3 3 3

4 1 1 1
12 3

3

d dd U dU
R U R

dR R dRdR dR

d d
R R

R dRdR

dw
R R R

R dR

ϕ ϕη δ η δ η δ η η

ϕ ϕη η η ϕ
δ

η ϕ η ζ
δδ

   + − − + − −   
   

  − + − − −  
  

 
+ + − = − 
   

(21c) 
 

( ) ( )1 2
6 7 6 7 1 7

2

7 2 7 62

4 4 4

4  

d d
R R

dR dR

d w dw
R QR

dRdR

ϕ ϕη η η η ϕ η

η ϕ η δ δη

− + − − −

+ + =−
(21d) 

 
Boundary Conditions 
Clamped circular plate  

At    0R =  
 

0,  U = 1 0ϕ = , 2 0ϕ = ,
 0 ,  

dw

dR
=

0RQ =   (22a) 
 
At   1R =  
 

0,  U = 1 0ϕ = ,      2 0ϕ = , 0W =                       (22b) 
 
Roller support circular plate  

At   0R =  

0,U = 1 0ϕ = ,    2 0ϕ =  ,
 0 

dw

dR
=

           (22c) 
At  R a=  
 

0,W = 0rN = ,   0rM = 0rP =      (22d) 
 
4. IMPLEMENTATION OF GDQ METHOD 

The generalized differential quadrature (DQ) method is 
adopted to solve the differential  equations of the annular 
plate. The core of the DQ method is that the derivative of a 

function in a domain ( )0 x L≤ ≤
 is approximated as a 

weighted linear summation of a function values at all discrete 
points in that domain. Thus, DQ method changes the 
governing differential equations into a set of corresponding 
simultaneous equations. To demonstrate the DQ method , 
consider the rth derivative of a function f(x) can be estimated 
as 
 

( ) ( )
r n

r
X ik kr

k 1

f x
  D f x

x i

=

∂
 =

∂ ∑
i=1,2,…….,n 

 

Where xi are the discrete points in the variable domain ,
r
ikD

 
,and f( xk ) are the weighting coefficient and the function 
value at the discrete points.Thus, for the first-order derivatives 
, the weighting coefficients can be calculated as     [25] 
 

( ) ( )
( ) ( )

1 i
ik

i k k

x
D

x x x

φ
φ

=
−

i , k = 1 , 2 ,…….n   , i≠ k 
 



IJRET: International Journal of Research in Engineering and Technology     eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 07 | Jul-2013, Available @ http://www.ijret.org                                                                                43 

Where   

( ) ( )
n

i i k
i 1

x x xφ
=

= −∏
i , k = 1 , 2 ,……..n ,  i≠k 

 
After that , the domain of the annular plate is divided into  n  
grade points in r direction. Chebyshev polynomial is the best 
method to evaluate the grid points in the domain of the 
plate[25 ]: 
 

i
i 1

r 0.5* 1 cos π
n 1

 − = −  −   i = 1 , 2 ,………..n 
 
The governing eqs. (21) can be discretized according to the 
GDQ method as follows: 

( ) ( ) ( )

( )

( ) ( )

1
2 1 1 1 2 4 1

1 1 1

1 1
2 4 1 2 4

1

2 2 2 2
4 2 4 2 4 1

1 1

1 4
, , ,

3

4 4 1
,

3 3

4 4 4 1
, ,

3 3 3

n n n

i j j i i j
ij j j

n

j j
ij

n n

i j j j i
ij j

R a i j u a i j u u R a i j
R

a i j
R

R a i j a i j R
R

ηδ ηδ η η ϕ

η η ϕ η η ϕ

η ϕ η ϕ η ϕ ζ

= = =

=

= =

 + − + − + 
 

   − − − −   
   

  − + =− 
 

∑ ∑ ∑

∑

∑ ∑
(23a) 
 

( ) ( )

( ) ( )

( )

2 4 2 2 4 1 2 4

1 1

1 1
3 5 2 3 5 1

1 1

1
3 5 6 7 8 52

4 4 4 1
, ,

3 3 3

8 16 8 16
, ,

3 9 3 9

8 16 1 1 4 16
8 16

3 9 3 9

n n

i j j i
i

j j

n n

i j j

j j

i j
i

R a i j u a i j u u
R

R a i j a i j

R
R

η η δ η η δ η η δ

η η ϕ η η ϕ

η η η η η ϕ η
δ

= =

= =

     − + − − − +     
     

   − + + − + −   
   

   − + + − + − −   
    

∑ ∑

∑ ∑

( )

( ) ( )
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2
2

1

2
5 1 5 7 8 2

1

2 2
6 7 1 2

1

,

4 16 4 16 1 1
, 4 16

3 9 3 9

1
4 ,

n

i j

j

n

j i
i

j

n

j i j i

j

R a i j

a i j R
R

R a i j w R

ϕ

η ϕ η η η
δ

ϕ η η ζ
δ

=

=

=





    − − + − + −    
     

− − = −

∑

∑

∑
(23b) 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

1
4 2 4 1 4 5 2 5

1 1 1

1 1 2 2
1 5 7 8 2 12

1 1 1
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1 4 4
, , ,

3 3
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3 3 3

4 1 1 1
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i j j i i j
i

j j j

n n n

j i j i j j
i

j j j

i j
i

R a i j u a i j u u R a i j
R

a i j R R a i j a i j
R

R
R

η δ η δ η δ η ϕ η

ϕ η η η ϕ ϕ ϕ
δ

η ϕ η
δ

= = =

= = =

   + − + − + −   
   

  − − + − − −  
   

 
+ + −  
 

∑ ∑ ∑

∑ ∑ ∑

( ) 2
1 3

1

,

n

i j i

j

R a i j w Rζ
δ
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(23c) 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
6 7 1 6 7

1

2 2
7 1 7 6 2 6 1

1 1 1

4 , 4

4 , 4 , ,

n

i j j

j

n n n

i j j i j j

j j j

R a i j

R a i j R a i j w a i j w QR

η η ϕ η η ϕ

η ϕ η ϕ η δ δη

=

= = =

− + − −

− + + =−

∑

∑ ∑ ∑
    (23d) 
 
The boundry conditions can be disaretized by the DQ on: 
 
Clampled circular plate . 

1 2
1 1 1 0U ϕ ϕ= = = , 

( )1
1

, 0
n

j

j

a i j w
=

=∑
at 0R = (24a) 

 
1 2  0n n n nU Wϕ ϕ= = = = 1R =  (24b) 

Roller support  circular plate . 

1 2
1 1 1 0U ϕ ϕ= = =    ,    

( )1
1

, 0
n

j

j

a i j w
=

=∑
    at   0R = (25a) 

 
0nW =

at 1R = (25b) 
 

( ) ( ) ( )

( )

1
1 1 1 2 4 1

1 1

1
2 4 4

2 2
1 4

1

4
, ,

3

4 4

3 3

4
, 0 ..at  R=1

3

n n

j n j

j j

n

n

j n

j

a n j u U a n j

a n j

η δ υη δ η η ϕ

υη υη ϕ η

ϕ υη ϕ

= =

=

 + + − + 
 

 − − 
 

− = ……………

∑ ∑

∑
 

 (25c) 
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(25d) 
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∑ ∑

∑

 
(25e) 
 
The congregation of the governing equations and the related 
boundary conditions lead to a set of simultaneous linear 
algebraic equations which can be write in matrix form as: 
 

( )
( )

( )
( )

bb bd b

db dd d

k k 0

k k q

   ∆     =     ∆        (26) 
 

Where  

bbk

and

bdk

  are the stiffness matrices of boundary of 
the boundary conditions and the size of it are 8×8 and 8×  4n-
8 respectively. 
 

dbk and ddk  are stiffness matrices of governing equations and 
have size of 4n-8× 8 and 4 n-8× 4n-8 respectively. 
 

The vector b∆
contains the displacements corresponds to the 

boundary points and is eliminated using the static 
condensation technique. The stiffness matrix eq.26  can be 
reduced into the form of  
 

{ } { }1
db bb bd dd dk k k k q− − + ∆ =   (27) 

 
From the above equation the vector of domain displacements  

d∆
 can be evaluated. 

 
5. VALIDATION OF THE RESULTS  

In order to examine the accuracy and efficiency of the results 
of this paper a comparative study made with another study  to 
implement this , an axisymmetric bending of a clamped and 
roller-support  functionally graded circular plate under 
uniformly distributed load  q . metallic  volume  fraction  
power law distribution through plate thickness and all material 
properties  are getting from Reddy et  al. [3] As shown in 
thetable 1 . The evaluation of the comparison .Between the 
presented numerical analysis and Reddy’s exact result are 
illustrated in table2 for dimensionless maximum deflection ,

4

64 cWD

qa  With  
( )

3

212 1

c
c

E h
D

ν
=

−
Where h  and  a are the 

thickness and radius of the circular plate. The conclusion from 
these comparisons , an excellent agreement between these 
results. 
 

Table 1. Mechanical properties of ceramic and metal of 
circular FGM plate [ 3 ] 

 
material Young’s 

modulus( Gpa)        
Poison’s ratio,v 

ceramic                 151  0.288 
metal                 70  0.288  

 
Table 2.Comparisons of the result got  in the present paper to  
the result got by Reddy etal.[3] for maximum dimantion less 

diflaction of FGM circular plate for different values of  p. 
 
Material  
constant 
P 

Reddy [3]  Present 
Clamped 
plate 

Roller 
support 
plate 

 Clamped 
plate 

Roller 
support 
plate 

0 2.979 10.822  2.979 10.822 
2 1.623 5.925  1.608 5.921 
4 1.473 5.414  1.467 5.410 
6 1.404 5.155  1.399 5.150 
8 1.362 4.993  1.357 4.989 
10 1.333 4.882  1.329 4.880 
15 1.289 4.714  1.287 4.713 
20 1.265 4.619  1.264 4.613 
25 1.250 4.559  1.248 4.558 
30 1.239 4.517  1.238 4.5165 
35 1.231 4.486  1.230 4.486 
40 1.225 4.463  1.229 4.462 
50 1.216 4.429  1.216 4.429 
100 1.199 4.359  1.1987 4.359 
 
6. RESULTS AND DISCUSSION  

In order to demonstrate  the bending and stress analysis of  FG 
circular plate numerically by unconstrained third order shear 
deformation theory via a generalized differential quadrature 
method, two cases are studied in this study , clamped circular 
plate and roller support circular disk .  
 
6.1 Clamped Circular Plate 

In the below , the results are presented in dimensionless form.   

Fig (2) shows the dimensionless deflection

w

h

 
 
   along the 

dimensionless radius (R ) under bending load with different 
values of  material  constant P.As  it expected , the deflection 
of the metallic plate (p=0) higher than that of the FG plate 
(p>0) , because of the FG plate more stiffer than that of the 
pure metal plate .  
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Figure 2:Bending distribution (w/h) for clamped circular 
platewith (R )for different value of p. 

 
Fig (3) present the variety of the dimensionless shear stress

*

cE

ττ
 

= 
  through the thickness of the plate with the 

dimensionless thickness coordinate variable 

z

h
 
 
  for different 

values of material constant  P and plate geometry 
 
h

a
 
 
  . It is 

seen that the values of shear stress decrease with  increasing  

in the thickness to the radius ratio( / )h a  As well as  , it is 
observable that , there is increasing in the shear stress with the 
increasing of the material constant  P , moreover , it can be 
seen that the maximum value of shear stress does not  occur in 

the mid plane
0

z

h
 = 
  ,the reason of this case belongs to the 

nature of non-homogenous  of the mechanical properties of the  
FGMs. 

 

 
 

 

 
 

 
 

Figure 3: Shear stress distribution through thikness for 
clamped  circular plate (a) h a � 0.1, p � 0.5⁄ , (b) 
h a � 0.1, p � 2⁄  , (c) h a � 0.2, p � 0.5⁄ , 

(d)h a � 0.2, p � 2⁄  
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6.2 Roller Support Circular Disk  

Fig (4) shows the radial stress parameter

* r
r

cE

σσ =
 
 
    with the 

body force parameter
( )ζ

, for different values of the material 
constantp.it is clear that the redial stress parameter  varying 
linearly with  the body force parameter , moreover the radial 
stress in the FG disk higher than that of pure metallic disk 

( )0P =
. 

 
Fig (5) illustrates the variation of the radial stress parameter 

with �R� At 
0.25

z

h
 = 
  and 

0.25
z

h
 = − 
   .It is clear that 

under uniform distributed load and body force , the radial 
stresses for FG plate higher than thatofthe pure metal plate

( )0P =
 , because of the FG plate  has a higher density. 

 

Fig (6) present the dimensionless deflection

w

h
 
 
 with ( )R

 of 
the disk under bending load with different values of material 
constant p .it is clear that,the deflection of the pure metal disk 
(p=0) higher than that of FG plate ,because of the rigidty of 
FG plate. 
 

Fig (7) shows the distribution of shear stress parameter ( 
*τ  ) 

through the thickness of the plate for  different value of 

thickness to radial variation (
 
h

a ) and material constant  P .It is 
clear that the behaviors of the shear stress through the 
thickness of plate in this case of roller support condition 
similar to the case of the clamped boundary condition . 

 

 
 

Figure 4: Radial stressσ�
∗ distribution body force (ζ) for roller 

support circular  disk for different value of  p. 
 

 
 

Figure 5: Radial stress σ�
∗configralion with (R) at 

�

h
� 0.25  

for roller support circular disk for different value of p. 
 

 
 

Figure 6: Radial stressσ�
∗configralion with (R) at 

�

h
� �0.25  

for roller support circular disk for different value of p. 
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Figure 7: Shear stress distribution through thikness for roller 
support circular plate  (a) h a � 0.1, p � 0.5⁄ , (b) 
h a � 0.1, p � 2⁄  , (c) h a � 0.2, p � 0.5⁄ , 

(d)h a � 0.2, p � 2⁄  
 

 
 

Figure 8: Bending distribution ( 
�

h
 ) for roller support  circular 

plate with (R )fordifferent value of p. 
 
 

CONCLUSIONS 

An axismmatric bending and stress analysis of functionally 
graded circular  plate under  uniform body force and uniform 
distributed load by unconstrateed  third order shear 
deformation theory  via generalized differential quadrature 
method (DQM) the numerical  solution of the unconstrateed  
third order shear deformation theory  can be applied to 
different case , of boundary condition , as well as , it can be 
applied to different loading condition , in contrast to the 
analytical solution limited to bending  load .  
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