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VIA DIFFERENTIAL QUADRATURE METHOD

HamadM .H'., F. Tarlochan?

Center for Innovation and Design, College of Engineering, UniversitiTenagaNasional, 43009 Selangor

Abstract
In this study, based on the unconstrained third order shear deformation theory (UTSDT), numerical analysis of an axisymmetric
bending and stresses of circular plate are investigated. The material properties are considerd to graded through the thickness of the
verticlecoordinate, and follow a simple power of volume fraction of the constituents.governing equations are derived and DQM is
used as an efficient numerical method for solving the differential equations.Two types of boundary conditions under the influence of
the bending and body force are studied. The validation of the results is done by a comparison with another study ,which available in

the literature and found good agreement between two studies.

I ndex Terms.bending,shearstress,circularplate, UTSDT,GDQM.
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1. INTRODUCTION

Thick and thin Circular disk in structured compotsplays a
major role in engineering applications related His tarea is
the static analysis thetypes of plates whichatedsly crucial
in their design ranging from automotive railway keasystems
to disks which constitute vital components pattdy in

turbo machines. Functionally,graded materials (F{sMere
first introduced in 1989 [1] whereby a number cdearchers,
because interested to study them .

In the past decade , many of the studies whichethout on
the FGMs disks concentrated on the conventiona gad the
first order shear deformation theories . The cativeal plate
theory (CPT) furnishes accurate and reliableaislysr this
plate . As the disk thickness increases CPT ovedigts
stresses response, because the transverse sheanat&f
and rotary inertia effects are neglected .Soetlrenumber of
shear deformation theories used to analyze mtederdick
plate , first order theory and third order theomere
developed to incorporate the shear deformatiorceffein the
first order shear deformation theory (FSDT), thenstant
shear stress condition through thicknesses violates
statically condition of zero shear stress at tee surface . So
its need for shear correction factor to modify siear forces
.The third order shear deformation theory (TSDTedjicts
parabolic variation of shear stress through thektiéss.
Although the use of higher order plate theory $etxdmore an
accurate prediction of the global response guestiguch as
shear forces , deflections strain and stresgagquires much

computation effort . Furthermore the use of theT) by
Reddy is constrained , because it considers thar stteess
vanishes on the top and bottom surfaces of thte plaut this
limitation is solved by the unconstrainedthird erdshear
deformation theory (TSDT) by Leuny [2].

In past decades several studies published ortdtie analysis
of FGMs circular disks Reddy et al. [3] Study tefato ax
symmetric bending of functionally graded circuladannular
plates whereby the first order shear deformatiaieptheory
was used. Ma and Wang [4] analyzed further by disiclg the
relationship between axisymmetric bending and bogkl
solutions of FGM circular plates. Third-order pl#iteory and
classical plate theory were demonstrated and dscusn
detail in their study. In addition, asymmetric fleal vibration
and an additional stability analysis of FGM ciraytéates was
included in thermal environment by using finite reknt
techniquespresented by Prakash and Ganapathi [Sp, A
Three-dimensional free vibration of functionally aged
annular plates whereby boundary conditions weréerdifit
using a Chebyshev-Ritz method was also studieddng6].
Malekzadeh et al. [7] Also showed how in thermal
environment in-plane free vibration analysis of F@hh-to-
moderately thick deep circular arches. Third-orddrear
deformation theory was used by Saidi et al. [8] drmlyze
axisymmetric bending and buckling of thick functdig
graded circular plates. Subsequently, fourth-orddrear
deformation theory was researched by Sahraee atid%jao
study axisymmetric bending of thick functionally aged

Volume: 02 I'ssue: 07 | Jul-2013, Available @ http://www.ijret.org 37




IJRET: International Journal of Research in Engineering and Technology

el SSN: 2319-1163 | pl SSN: 2321-7308

circular plates. Besides this, Sepahi et al. [10plKzed the
effects of big deflection of thermo-mechanical leddannular

FGM plates on nonlinear elastic foundation using th

differential quadrature method. Geometrically noeér post-
buckling of an imperfect circular FGM plate wasditd by Li
et al. [11] who found both mechanical load and svanse

non-uniform temperature rise. A study conducted by

Malekzadeh et al. [12] resulted in three-dimendiofiee
vibration of thick functionally graded annular gah thermal
environment by differential quadrature technique.n A
investigation of nonlinear analysis of functionalgraded
circular plates was conducted by Nosier and F4ll&h It was
related to asymmetric transverse loading, accordmghe
first-order shear deformation plate theory based vom
Karman non-linearity. In addition, Sburlati and 8elta [14]
studied three-dimensional elasticity solution ohdtionally
graded thick circular plates. Correspondingly, Galami and
Kadkhodayan [15] studied axisymmetric nonlinear dieg
analysis of annular functionally graded plate. Bhady used
third-order shear deformation theory. A precisesetb form
answer for free vibration of circular and annulaoderately
thick functionally graded plates of first-order ahe
deformation theory was studied by Hosseini-Hashemal.
[16] Nie and Zhong's study [17] was on frequencyglgsis of
multi-directional functionally graded annular platesing state
space differential quadrature method. It was basedthe
three-dimensional theory of elasticity. It must heted that
direct displacement method was conducted by Yaal.d1.8]
with the aim to represent the axisymmetric bendiig-G
circular plates under transverse loads that wetstrary.
Another theory using Mindlin’s plate theory abouted
vibration was investigated by Ebrahimi et al [1Bhis study

was concerned about moderately thick shear defdemab

annular functionally graded by Pilate. The effemtgoupling
between in-plane and out-of-plane vibrating modesrart
functionally graded circular/annular plates wasneixeed by
Hashemi et al. [20]. Nonlinear bending and postkbog of a
functionally graded circular plate was examinedNdg and

Wang [21] whereby the conditions were mechanicall an

thermal loading. Bayat et al [22 ]Jused first-ordenear
deformation theory to study the thermal elastiqpoese of
rotating disk with small and large deflections, grésented
the results with analytical solutions.

Viola et al. [23] Used a2D unconstrained third esrdghear
deformation theory (UTSDT) in static analysiswdderately
thick functionally graded cylindrical shells subjed to
mechanical loadings. Also Viola et al. [24] Empay
(UTSDT) for analyzing thedynamicbehaviour of contgle
doubly —curved laminated shells and panels .

It is clear from the above literature most of siedies which
carried out on the static analysis of the circdiaks based on
the first order shear deformation theory and fewmhem
based on the third order deformation theory whsckolved
analytically for limited boundary conditions. Onetlother

hand the numerical technique presenting staticyaisafor the
circular disks based on high unconstrained thirdeorshear
deformation theory is quite poor .As well as , tee of the
shear function model which is used by [24] can ppglied to
the displacement field of the circular disk .

In  the present study,unconstrainedthird order
deformation theory is used for axisymmetric statialysis of
functionally graded clamped and rolatingcirculeatpl .The
circular plate is subjected to two types of loadjnigending
and body force . The mechanical properties arenasduo be
graded in the thickness direction according tangke power
law distribution in terms of the volume fractiof the
constituent . By the principle of minimum total egg the
governing equations of equilibrium are obtainedoading to
the unconstrained third order shear deformatibeoty . By
employing the differential quadrature method asngpke but
accurate and fast convergent method to discrbtizet
equilibrium equations and to implement the boupdar
conditions . The effects of body force parametghe material
constant, and the geometric parameters of cirqiide on the
stresses and deflection response are is studieetdil.

2. PROBLEM STATEMENT

Consider a FG circular disk with thickness( h )d aadius ( a
) , axisymmetric with respect to the z-axis as smowfig.1

and it is subjected to uniform transverse presgurcase of
clamped condition,whilein case of roller supporhdition, it

subjected to both uniform pressure and body force

The mid—plane of the plate refers to the cylingricoordinate

system(r’g’z) in the radial ,circumferential and axial
directions respectively.

. — }
iz z

Figure 1. FG circular disk with thickness (h) and radiup (a

2. 1- Mechanical Properties OfFGCircular Plate
Types

Typically FGMs are made of a mixture of the two
constituents . In this research it is assumetthieFGMs are
made of a mixture of ceramic and metal constitiém
material properties of the FG plate vary contirslpuand
smoothly in thickness direction z and are fundiofvolume
fraction of constituent materials
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P(z) =(Pm-Pc)vm+ PCip)

Where:

P(Z) material property at location z through thicknessind
¢ denotes the metallic and ceramic constituesigsicgvlly .

Vm :volume fraction of metal
_ p
Vin = ( : 2h2 Zj
(2)

2<z<v?2)

Where:

z: thickness coordinate(s_h/
p : material constant.

As the material constant is equl to z(ePo: O), or equal to

infinity (p=
obtained as a specializ case of functioaly gradaterial . in
fact , from equation (2) it possible to obtaian :

p=0-V,=1V, = 0- p(2)=p,
p=o -V, =0V, =1- p(z)=p,

Fig.2 show that material profile through the FGteldor
various of p.

According to relution (1), the elastic modulur Edagtensityp

to be varied according to the above equation paisdon’s
ratioV is assumed to be constant.

E(Z):(Ern_EC)+Vm+EC(3)
p(z):(pm_pc)vm+p0(4)

3. GOVERING EQUATIONS

Based on the unconstrained thired—order shear dafam
theory (UTSDT) ,displacement field in the cylingiic
coordinate system can be written as :

U(r.z)=u(r)+f (Z)Cli(f)““g(z)("z(r)( 5)
W(I‘,Z):W(I')(G)

Where : u ,w are the displacements of points enntiddle
plane (z=0)in the radial and vertical directionpiesvly.

oo) , the homogeneous isotropic material is

Q:smalltransrverse normal rotation about fhaxises

%: smalltransrverse normal higher order rotation uabB-
axises

f (Z) ’ g(z) are shear functions.

From the previous[23], the displacement field haserb
improved by taking into consideration shear funwialong
the thinckess . indeed ,the model for the sheatifom in this
study has taken from previous work[24].

Strain- displacement relations:

Eur :$+(z—az3)d—¢1—az3d—¢2
dr dr dr (7a)

£ :1u+(z—azg)—1 —az8t
o= r¢l r%(7b)

Viy = (1— 3a22)qq - X 7p, +3—\:V
(7c)
V=0,V =0,6,=C
Stress-strain relations
Oy Q: Qo 0 ||,

op = Qe Qxn 0 |{g
TFZ O O Q66 YFZ (8)

Where :
E(2)
Qi =Qp= o1 Q1= UQy;
2(1+U )

2(1+v)
The total potential energy of circular plate:
a h/2
U= I 2n[0re, + 048y + Trzyrz]rdZdr
0-h/2 (10)
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a
V, = —2ﬂj(plr2w25u + por *w?op,
0

—apsr2w’og — apsr 2w, + rgow)dr (11)
Where :

H!U YV . .
"are the total potential energy , strain energy tred

potential energy of the body force and pressured loa
respectively.

By the principle of minimum total ener@@T =0

(—%(rN,)+ Ny —plrzwzja'u +

d d
(_a(er)"'aa(
3arR, +

(ap; - p,)r?w?) o +

rpr)+M9—apg+r¢4 -

dr =0

O —y

[a%(rpr )-apy_3arR, +ap3r2w2j5¢2 -

d
—(r@)+rq,j5w
(dr (12)

Where:
N

M

rNo :Stress resultants
Mg :Stress couples
Pr Po :higher order stress couples
% -transverse shear resultant
R . higher order shear resultant
PLP2 P3. constant proportional to the mean ,first anddthi
moment of the density along the thickness.
h/2
(N,, M,,P)= I o, (1,2 z3)dz
-h/2 (16a)
h/2
(No.Mg.P) = [ 05(12.2°)cz
-h/2 (16b)
h/2

(@ R)= [ 7:(17)dz
-2 (16¢)

h/2

(p11p21p3) = I p(z)(l-Z.Zg)dZ

-h/2 (16d)
From eqgs. (7),(8) and (16), one can obtain theofahg
relations:

(Bll_aEll)[_+U_¢lJ_aEll(_+UE¢2j
r T J@7a)
N
Ng—An(udr+ uj
+(511‘0'E11)[U_(&+£¢1J‘UE {Ud—%+}¢2j
r d r (17b)

du 1
Mg = Uv—+=u
6 Bn( 5 j

r

+(D11‘0'F11)[Ud_¢1+£¢_LJ‘0'F11(Ud_¢b+—1¢2J
ar da (17d)

k= Ell(%+u%uj+

d 1 d 1
(Fn‘aHn)[—d? tu- qolj—aH 1,(—;12 tu- 402)
(17e)

Q= '%4(¢1+3_Wj -3aD (o1t @)
r (17f)

dw
R = D44((pl+_dr J_?’GFM(%"' A
(17h)

Where:

A1 B11 D13 13F 15H 1. are the circulaer disk stiffness
coefficients
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(An’ By, D1xE1H 1) =

hi2
E
_,;';2 (1_(52) (1 2,222 7* zﬁ)d

(18a)

h/2 E(Z)

(A441D44:F44) = m

1z,2% z*)dz
(122 2)d

-hi2 (18b)

From equation (12) , the equilibrium equations are
ou -

%(rNr)+ Ny - pra? =0

(19a)

oq:
i(r|\/| )—ai(rp)—M +aP, -rQ +3arR +
dr r dr r g 4 r
(22 —aps)r?a” =0 (19b)
o, .

ai(rPF)—an -3rR +ap;ra? =0

dr (19¢)

oW :

d
—(rQ, )+rq=0
df( ) (19d)

Equilibrium equations in terms of displacements:

d 1 d2
(Aﬁ.l ) u+A11 A11FU+(511—UE1QFF?+

d
(B.Ll_aEll)d_?_(Bll_aElJ)"'

2

1 d d
F(/i‘aEllr dr%_aEll_%+aE11 @t pLPe’ =0

dr
(20a)

d’u d 1
(Bn aEll) a2 (Bll aEl]) u ( 1 aE )r u+
- 2y \d4
(D -2aFy,+a?H ) .

—[(D11 2aF, +a Hll)l (A44 6aD ,+ W?F g }wl—

2

(a'F11 +a’H 11) r ddrqzé

—(aFﬂ+a2H11)cL_¢r5+[(aF11+a2H 1])r1+(3aD it 90 °F Qr}gp;

dw
~(Au- 30'D44)d_+(p2 ,o3)r w* =0
(20b)
d?u du 1 d?
EllrF"'Ella_Ell?u(Fll"'aH yr 4

d 1
+(F11+aHll)d—?—[(Fll+ aH 1])?+(3D - 9 F 4)}40

d? d 1
—aHqqr ?? —aHlld—(fl+(aH 11?+ 9aE41)

@ 3Dy d_+ apg el =
r
(20c)

d
('%4_3aD44)rd_rq+(A44_ 3D 4) -

d d?
(3aD44)rd_§?_(3aD44) @t A4J?ZV+
rq=0 (20d)

Using the following dimensionless parameters fordicity .

6
r w uh h _Ash
rR=L w=% y=2= 5=2 m=
a h =~ a2 ¢=¢ ’ Hy
h° D,,h?
= B =~
Hll , Hll
M Eiuh Fuh® Auh® Dysh*
Hll Hll Hll Hll
F,.h?
I78 - 44
Hll
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Q ‘pressure parameter

h®*q
Hll

Q:

¢ bodyforec parameters

h’acw?
¢, = ales
11
Z — (:02 _aps)hng
2 aH

11

_4ph'e?

{(=——
3aH,,

the equations of motion in dimensionless form are:

d2U 4 \ A% (4 \dgy
5—— 5— ——n4R—2 -
moR —— 1y 1y (’72 3’74} R [’72 ,74)
4 ¢ 4 dg. _
(’72_5/74} fim 3l d_22_3,7 R PR
(21a)
o o i
( ~ ,75+16]1
N R
(/76—877+1678)?R
d’p, (8 1
e [(3”5 s }’2 7o+ 1
fRf —ZzRZ
(21Db)
d du 1 4),d%p 4)d¢
a1 1 4_d%, 4dg
[(”5‘EJE*(%‘””)_ZR}“'ER_dRzz K

41 1 _dw 5
+[§—+12'78 > j¢2 3773Rﬁ——(3c¢

(6 —4n7)R ¢1+( 6= 477)$1- Rd¢2

2w dw
41182 +’775R— +de— =-QR
dR? 7dR (21d)

Boundary Conditions
Clamped circular plate
At R=0

aw _,
U =0, ¢1:0’¢2=0,dR 'QRZO (228.)

At R=1
U=0 4=0 ¢=0w=0 (22b)
Roller support circular plate
At R=0
aw _g
U=0,4=0 40 ¢ (22¢)
At R=a

W:O,NrZO MrZOPr=0 (22d)

4. IMPLEMENTATION OF GDQ METHOD

The generalized differential quadrature (DQ) methisd
adopted to solve the differential equations of #raular
plate. The core of the DQ method is that the dérigaof a

function in a domain(OSXSL) is approximated as a
weighted linear summation of a function valueslbadiacrete
points in that domain. Thus, DQ method changes the
governing differential equations into a set of esponding
simultaneous equations. To demonstrate the DQ rdetho
consider the rth derivative of a function f(x) dam estimated

as

r X)Ek :kZ: irkf(xk)

;
Where xi are the discrete points in the variablmaio ,Dik
,and f( xk ) are the weighting coefficient and thmction
value at the discrete points.Thus, for the firgtesrderivatives
, the weighting coefficients can be calculated 425]

oo X))
ik
(Xi_xk)¢(xk)i’k—1,2, ....... n #k
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n
¢(Xi):|_1|(xi‘xk)
Where 1= i,k=1,2,...... n, #k

After that , the domain of the annular plate isidizd into n
grade points in r direction. Chebyshev polynomsathie best
method to evaluate the grid points in the domainthaf
plate[25 ]

= 0.5*{1— co{ 1
n_

The governing eqgs. (21) can be discretized accgrttinthe
GDQ method as follows:

Rg}az(i,i)uj +f715_n§181(i,1)uj —nﬁéu +(f72—gn4)R§a{i,J)¢} *
[’72 -gn4jgai(i, 04 _(/72_:/74)5:} & -

[;’74)'?2%('; j)ﬁ_g”“ZaZ(i’j)¢J2+g’74j¢j2:_Zﬁz
= =1 R

(23a)

[/72-—/74JJR ag(i, ) uj ['72 %’mjéz {i.i)y; [/72- mgdﬁul

J =

-1+ RS
3359 2

j=1

)61+ 205+ 251 e o
=1

n
8 16\ 1 1 4 1 i
[[,73 -5/75+_9JE+(/76—&77+1678)?R}¢11‘(—3/75‘—33 a(i, J)¢1'2

=
n
4 16 . 4 16) 1 1
—[5'75 _EJ Elal('v i)of {[—:3’75‘—9]@*(4’77‘1678)?3}
=

n

8~ -417) 3R D i i) wj =~
j=1

(23b)

ﬂ4d?iaz(i’j)ui +1g0 n ayi.j)u "745%4 +[0;§]Ri’=\iiij)¢}+[rz 5§J
_ - <
Sy o500 00
j=1 j=1

[**+1278 i ]¢2 - RZam =R

(23c)

(-4m, Rzai +ne-41)4 -

RZai )4~ 47#+f7m2az(n i)w +5762a{|
(23d)
The boundry conditions can be disaretized by theoRQ

Clampled circular plate .
n

Daij)w; =0

:¢%:¢12=O’ j=1 at R=0(24a)

U, :¢ﬁ :¢r? =W, =0R=1 (24Db)
Roller support circular plate .

1 Zai(i,j)wl =
U =¢1=¢1 =0 e at R:0(25a)

W, =0
atR=1(25D)

n . 4 n .
’715231(”- J)Uj +(U’715)Un "‘(’72‘5’74}231(”1 J)¢,; +
=1 =1

4
(U’72 __U’74j¢ _—’74

Zn:al(n,j)¢,

—guqmﬁ =X o at R=1
(25¢)

n 4 n
Uza—jz:;al(n: j)Uj +(U’725)Un +(/73—§/75)2a1(n, J')¢J1 +

4 4

(U’73 _EUﬂsjﬁ _5’75
. 4
Zal(n, j)e? —5U175¢,f =0, at R=1

i=1
(25d)
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’745231 n, j)u; +(unQ)U +(’75 jzaﬁ nj ¢,

=1

(Uﬂs _gujﬁ _gzal(nv J)¢12
j=1

The congregation of the governing equations andreteed
boundary conditions lead to a set of simultanednsat
algebraic equations which can be write in matrixrfas:

{kbb kbd} {(Ab)} _ {(0)}
Kap  Kaa (A d) (Q) (26)
Kpb Kpa
Where and are the stiffness matrices of boundary of

the boundary conditions and the size of it at88nd 8 4n-
8 respectively.

Kb andkdd are stiffness matrices of governing equations and
have size of 4n-88 and 4 n-& 4n-8 respectively.

The vectorAb contains the displacements corresponds to the
boundary points and is eliminated using the static
condensation technique. The stiffness matrix eq.@&n be
reduced into the form of

[‘kdbkﬂtk ba+ K dd:|{A ¢ ={d} @7)

From the above equation the vector of domain digptents

A, can be evaluated.

5.VALIDATION OF THE RESULTS

In order to examine the accuracy and efficiencyhef results
of this paper a comparative study made with ancthety to
implement this , an axisymmetric bending of a clachgnd
roller-support  functionally graded circular platender
uniformly distributed load q . metallic volumeradtion
power law distribution through plate thickness alidnaterial
properties are getting from Reddy et al. [3] A®wn in
thetable 1 . The evaluation of the comparison .Betwthe
presented numerical analysis and Reddy’'s exactltrese
illustrated in table2 for dimensionless maximumlelefon |,

3
64ND, Eh

P = 12(1—u2)

ga* -
With Where h and a are the

thickness and radius of the circular plate. Thecuwion from
these comparisons , an excellent agreement betwese
results.

Table 1. Mechanical properties of ceramic and metal of
circular FGM plate [ 3]

material Young’s Poison’s ratio,v
modulus( Gpa)

ceramic 151 0.288

metal 70 0.288

Table 2.Comparisons of the result got in the present pape
the result got by Reddy etal.[3] for maximum diniantiess
diflaction of FGM circular plate for different vads of p.

Material | Reddy [3] Present
constant | Clamped | Roller Clamped | Roller
P plate support plate support
plate plate
0 2.979 10.822 2.979 10.822
2 1.623 5.925 1.608 5.921
4 1.473 5.414 1.467 5.410
6 1.404 5.155 1.399 5.150
8 1.362 4.993 1.357 4.989
10 1.333 4.882 1.329 4.880
15 1.289 4.714 1.287 4.713
20 1.265 4.619 1.264 4.613
25 1.250 4.559 1.248 4.558
30 1.239 4.517 1.238 4.5165
35 1.231 4.486 1.230 4.486
40 1.225 4.463 1.229 4.462
50 1.216 4.429 1.216 4.429
100 1.199 4.359 1.1987 4.359

6. RESULTSAND DISCUSSION

In order to demonstrate the bending and stredgsasaf FG
circular plate numerically by unconstrained thindler shear
deformation theory via a generalized differentialadrature
method, two cases are studied in this study , ckhgircular
plate and roller support circular disk .

6.1 Clamped Circular Plate

In the below , the results are presented in dinoehsss form.

w
Fig (2) shows the dimensionless deflect[icnj along the
dimensionless radius (R ) under bending load wifferént
values of material constant P.As it expectdue,deflection
of the metallic plate (p=0) higher than that of thé plate
(p>0) , because of the FG plate more stiffer thaat bdf the
pure metal plate .
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3.5 C v]
E -0.5 :—
3k r
C A :_
25 e
C 15
wor -
—_ 2 .
hoTL =r
1.5 i - -25 f—
C T E
1 :_ -3 :—
g -3.6 E—
05 07 f | o |
) E -0.5 -0.25 Z/hD 0.25 a
° (b)
a
Figure 2:Bending distribution (w/h) for clamped circular osE
platewith (R )for different value of p. o
04|
Fig (3) present the variety of the dimensionlessaststress -n.eE_
T* :L 08 f—
Ee through the thickness of the plate with the - ;‘
L@ . :_
dimensionless thickness coordinate varia for different T* '1'45_
h -1.8 :—
o 1.8 :—
values of material constant P and plate geomL(‘?)). It is we E oy L
seen that the values of shear stress decrease ingiteasing e 0= h o 0.2 0®
- : us /@) - z/
in the thickness to the radius ra As well as , itis (c)
observable that , there is increasing in the shrass with the
increasing of the material constant P , moreoviercan be
seen that the maximum value of shear stress ddesawur in °F
0.2
i
1 . 0.4 —
the mid plan ,the reason of this case belongs to the g
nature of non-homogenous of the mechanical prigseof the ot e
FGMs. 08 E—
E
’ F 1.2 E—
E T* b
- ; 1.8 E—
1.5 ;— s E—
o = n : 5
fn (d)
25 — Figure 3: Shear stress distribution through thikness for
ok By L S, clamped circular plate (dYa = 0.1,p = 0.5, (b)
z h/a=01,p=2,(c)h/a=0.2,p= 0.5,
(a) (dh/a=0.2,p=2
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6.2 Roller Support Circular Disk

L . arj
CE
Fig (4) shows the radial stress parameter with the

body force parametég) , for different values of the material
constantp.it is clear that the redial stress patamevarying
linearly with the body force parameter , moreothes radial
stress in the FG disk higher than that of pure Hietdisk
(P=0)

Fig (5) illustrates the variation of the radialests parameter

(5:0.25J (E:—o.sz
with (R) At h and h It is clear that

under uniform distributed load and body force , tiaelial
stresses for FG plate higher than thatofthe purtalnpate

(P - O) , because of the FG plate has a higher density.

w
Fig (6) present the dimensionless deflec(i&)with (R) of
the disk under bending load with different valuésmaterial
constant p .it is clear that,the deflection of tuee metal disk
(p=0) higher than that of FG plate ,because ofribieity of
FG plate.

Fig (7) shows the distribution of shear stress patar (T* )
through the thickness of the plate for differersiue of
h

thickness to radial variationd ) and material constant P .It is

clear that the behaviors of the shear stress throtng
thickness of plate in this case of roller suppoondition
similar to the case of the clamped boundary cooliti
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Figure 4: Radial stress; distribution body force(j for roller
support circular disk for different value of p.

(R)

Figure5: Radial stressyconfigralion with (R) atE = 0.25
for roller support circular disk for different vawof p.

o

|
Q

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

OMTTT T T I T I T T[T I T [T I T[T T TTrT

PR T T [ T SN HR S S|
025 (R ] 0.5 075 1
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for roller support circular disk for different vawof p.
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Figure 7: Shear stress distribution through thikness fderol
support circular plate (&)/a = 0.1,p = 0.5, (b)
h/a=0.1,p=2,(c)h/a=0.2,p=0.5,
(dh/a=02,p=2
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Figure 8: Bending distribution %) for roller support circular
plate with (R )fordifferent value of p.

CONCLUSIONS

An axismmatric bending and stress analysis of fonetly
graded circular plate under uniform body force amiform
distributed load by unconstrateed
deformation theory via generalized differentialadrature
method (DQM) the numerical solution of the uncoaitsted
third order shear deformation theory can be agplie
different case , of boundary condition , as well, discan be
applied to different loading condition , in contras the
analytical solution limited to bending load .
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