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Abstract

We must first find a behaving law of a materialfdoe using it in the structure. The establishmehthis law in the case of a

composite material requires the knowledge of hastéd equivalent coefficient. In this work, we witesent the vibratory technic with
which we can extract the equivalent elastic coieffits of some composite materials. The relatiorsshig have obtained through this
analysis permits to evaluate the equivalent elastiefficients of composite materials as a functodntheir self throb. Those

relationships are first validated with the determatiion of mechanical characteristics of conventiomedterials. After that, equivalent
elastic coefficients of some composite materiats eraluated. Simulated results we have obtaineddm®ussed in comparison of
Voigt and Reuss boundaries
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1. INTRODUCTION 7

Composite materials are used in many industrialasare
automobile, aeronautic, building, medicine betweamany
others. Their mechanical performances depend onuseel
charge and matrix, but also on the quality of thterface
between the components [1, 2, 3]. An important &xishe
research on the composite materials concerns tileation of h
their behaving law that is the relationship whiatk$ stress

and strain. In this work, we propose a rapid tecdni /
characterization of composite materials from thbratory b
analysis. This technique is based on the deterinmabf
relationships between mechanical properties of nedgeand L
their vibratory characteristics from the Lagrangeotion

/y

A
v

equations and the analytical methods of the trasale
vibrations of structures [4]. In other to validathose

relationships, we will calculate at once, known heatcal

characteristics of some conventional materialse\five will

evaluate numerically elastic properties of someatiied

composite materials. The discussion on the obtanesdlts

will be done according to Reuss [5] and Voigt [@ubdaries
results.

2. THEORETICAL MODEL

The aim of this work is to determine elastic caréfnts of
sandwich composite materials [7] having the morpbgl of
those of the following figure 1:

Figure 1: Stratified heterogeneous composite material

Usually when composite materials are used in sirast they
are supposed homogeneous. For this reason onepaasent
them by the following scheme of figure 2:
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Figure 2: Homogeneous composite material

The structure represented on the figure 2 is confiom a
heterogeneous structure, and we are trying to méter its
homogeneous elastic coefficients. To solve thisiem, we
have a lot of methods in literature. The most usédhese
methods are self-consistent method and homogenizaties
[7]. In this work none of them will not be used. Wl try to
link mechanical properties of a structure to itbratory
properties. Materials of this work are supposedtals, so we
can model them by a spring-mass system which the fr
motion vibration can be put in the following shape

MK +[]x} ={o} 1)

Solving these equations passes through the detatiorinof
the vibration self throb [8, 9, 10] with the held the
following relationship:

Ik

i m )

The studied structures will be considered as bbeam free-
built as represented in the following figure 3:

A
v

Figure 3: Plane thick beam built in at x=0

Using analytical methods, we can obtain vibratiguations
of these beams through the technical of Green@vaste [4]

which permits to have the following equation:

4 2
£l a*w(x,t) _ _pAa w(x, t)
ox* ot? )

Solving these equations brings to divide it in twthers
equations. One depends on time, the other on tleesp
Solving space equation will take into account thidding of

boarding condition at x=0 and permit to calculabe t/]
parameter:

A=(2n+ 1)2
2 (4)

This analytical parameter can be linked to the migakthrob
through the relationship:

4
BT

()

In this relation:

P isthe density;

A :the beam area;

L :the length beam;

I . the inertial momentum of the beam accordiagthe
rotation axis;

G : The self throb of the system;

A.a grandeur which is obtained by the applicatdfrthe
beam bounded limits.

It's that relationship which permits to evaluateastic
equivalent characteristic coefficients of compositaterials
from their self throbs obtained numerically.

3. SIMULATIONS AND DISCUSSION

Before applying the relation (5) to the numericalbnceived
composite materials, we will first use this relasbip to
determine mechanical characteristics of some cdiorel
materials in order to validate it.

3.1 Determination of mechanical characteristics of
some conventional materials

3.1.1. Mechanical characteristics of Stell Inox

Young’s modulus E of the stell Inox is given in table 1:

Tablel. Young’'s modulus of Stell Inox
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Frequenc E E Err

Mode (Hz()] Y humerical experimental| or
(GPa) (GPa) [6] %

1 1248,0 208,26 203 2,6

3.1.2. Mechanical characteristics of Iron

Mechanical characteristic of iron is given in thble 2:

Table2. Young’s modulus of Iron

Frequenc E E Error
Mode (Hz()] Y humerical experimental %
(GPa) (GPa) [6] 0

1 1271,4 216,14 210 2,92

3.1.3. Mechanical characteristics of Glass

3.2. Evaluation of mechanical characteristics of soe
composite materials

We have worked with four composite materials:

3.2.1. Composite material n°1

We have considered a thick stratified beam compasfed
Alloy aluminium/Iron/Alloy aluminium, with the fobwing
millimeter dimensions: 100*[(0,3+1,2+1,5)*10]*10;
(Length*thickness*width).

3.2.1.1. Elastic modulus

Different values of the elastic modulus are givetable 5

Table 5: Values of elastic modulus for some models

For this material data are summarized in table 3:

Table3. Young’s module of Glass

E . Erro
Mo | Frequency numerica E experimental r
de | (Hz) | (GPa) (GPa) [9] %)
1 1318,8 76,833 74,000 3,82

According to results in tables 1, 2 and 3, we Hawad values
of elastic modulus of some conventional materialtfe first
vibration mode with an error less than 4%. So weetegood
coherence between numerical and experimental sedtdtnce
we hope that we can use the relationship (5) terdehe with
acceptable accuracy equivalent elastics coeffisi@itsome
composite materials. Mechanical characteristics sofgle
conventional materials are from reference [11] arel given
in table 4.

Table 4: Mechanical characteristics of some conventional

materials

Elastic P,oisso . Elastic
Material modulus (r:]oseffic E e/rr1nsg y limit

(GPa) - 9 (MPa)
Steel inox | 203 0,28 7850 200,00
Iron 210 0,28 7850 200,00
Steel 45
SCD 6 220 0,28 7850 1450,00
Glass 74 0,25 2600 60,00
Epoxy 4,500 0,4 1200 70,00
AT | e 034 | 2700 30,00
alloy

Vibratory
Composite 1 Reuss | method \Voigt
method | (frequency: | method
1233.6 Hz)
Young's modulus B 416 67 | 142 224 154,00
(GPa)

3.2.2. Composite material n°2

It concerns a thick sandwich beam: Alloy aluminiGtell 45
SCD 6/Alloy d’aluminium, with the following millimier
dimensions: 100*[(0.3+1.2+1.5)*10]*10;
(Length*thickness*width).

3.2.2.1. Elastic modulus

The values of elastic modulus are presented infalhewing
table 6:

Table6. Values of elastic modulus for some models

Vibratory \Voiat
) Reuss | method g
Composite 2 : metho
method | (frequency: d
1240.8 Hz)
Young’s modulus E 118,67 | 14388 160,00
(GPa)

3.2.3. Composite material n°3

This time we have a thick sandwich beam based asgAhox
Stell/Glass, with the following mm dimensions:
100*[(0,3+1,2+1,5)*10]*10; (Length*thickness*width)
3.2.3.1. Elastic modulus

The elastic modulus values are indicated in table 7
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Table7. Values of elastic modulus for some models REFERENCES
Vibratory [1]. 0. Dgzellus, "Matériaux compositgs a matrice
. ReUss method Voigt métalliques et céramiques", cours Université denLyo
Composite 3 . 1, pp 8-15, 2009.
method | (frequency : method IR L.
1236,9 Hz) [2]. L. Gor_net, Généralité sur les Matériaux
- Tl Composites”, Cours; Ecole Centrale de Nantes, pp 1-
EO(‘gg; modulus 11960 | 142,22 151,40 6, 2010 _ |
[3]. Nodal Consultants, "Industrie Francais degéviaux
) ] Composites"”, Rapport de synthése pour le conte de
3.2.4. Composite material n°4 DIGITIP, pp 4-10, 2010.
At last we have considerate a thick sandwich beamposed [4]- M. Lalanne, P. Bertier, J. Der Hagopian, oNtion
with:  (Epoxy/Glass/Epoxy), with the following mm des SyStEmeS“mecanlques », .
dimensions: 100*(0,3+1,2+1,5)*10]*10; [5]. Reuss A, “Berechung der fliessgrenze von

(Length*thickness*width).

3.2.4.1 Elastic modulus [6].

The obtained values of elastic modulus are repont¢able 8:

Table8: Values of elastic modulus for some models

Vibratory
_ Reuss method Voigt
Composite 4 method (frequency | metho [8].
1186,2( d
Hz) [9].
oS eellls g sn | asep 46,20
(GPa)
[10].
The results obtained show that, Young’s modulusbateveen
the Voigt and Reuss limits as predicted by the ansthof
references [7, 12], what makes plausible our nucakresults. [11].
However, some verifications are needed to defiitalidate
our results, notably according to the orientatibsttell in the [12].

matrix and their volume fraction. Also for good idaition our
resultants must also be compared the experimemid.dn
this work we supposed that our composite matedads not
damped. But in reality we have to take into accothrd
damping in some real composite materials. So wiepeitform
our modeling.

CONCLUSIONS

The aim of this work was to contribute to the idiécdtion of
mechanical properties of some materials by the atioy
analysis. We have modeled by the finite elementshoak
through the virtual works theorem, a relation whpgrmits to
extract the Bernouilli model in order to realize rou
measurements. We have verified some hypothesisnitkieh
states that the Young's modulus must always statwden the
Voigt and Reuss boundaries. From our numericabylte, we
can conclude that, the use of both analytical gearsl melt
with the self throb can lead us to evaluation o&stt
equivalents coefficients of some materials with kveaor.
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