
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org 981

PREVENTION AGAINST NEW CELL COUNTING ATTACK AGAINST

TOR NETWORK

Gurudas V R

Student, Department of Computer Science and Engineering, Jawaharlal Nehru National College of Engineering,

Shimoga.VTU, Karnataka, India, gurudasvr@gmail.com

Abstract
Various low-latency anonymous communication systems such as Tor and Anonymizer have been designed to provide anonymity

service for users. In order to hide the communication of users, most of the anonymity systems pack the application data into equal-

sized cells (e.g., 512 B for Tor, a known real-world, circuit-based, low-latency anonymous communication network). Via extensive

experiments on Tor, authors in [22] found that the size of IP packets in the Tor network can be very dynamic because a cell is an

application concept and the IP layer may repack cells. Based on this finding, they investigated a new cell-counting-based attack

against Tor, which allows the attacker to confirm anonymous communication relationship among users very quickly. In this attack, by

marginally varying the number of cells in the target traffic at the malicious exit onion router, the attacker can embed a secret signal

into the variation of cell counter of the target traffic. The embedded signal will be carried along with the target traffic and arrive at

the malicious entry onion router. Then, an accomplice of the attacker at the malicious entry onion router will detect the embedded

signal based on the received cells and confirm the communication relationship among users. In this paper i propose a mechanism to

prevent from this attack.

Keywords: security; sensor networks, denial of sleep attack

---***--

1. INTRODUCTION

Concerns about privacy and security have received greater

attention with the rapid growth and public acceptance of the

Internet, which has been used to create our global E-economy.

Anonymity has become a necessary and legitimate aim in many

applications, including anonymous Web browsing, location-

based services (LBSs), and E-voting. In these applications,

encryption alone cannot maintain the anonymity required by

participants [1]–[3]. In the past, researchers have developed

numerous anonymous communication systems. Generally

speaking, mix techniques can be used for either message-based

(high-latency) or flow-based (low-latency) anonymity

applications. E-mail is a typical message-based anonymity

application, which has been thoroughly investigated [4].

Research on flow-based anonymity applications has recently

received great attention in order to preserve anonymity in low-

latency applications, including Web browsing and peer-to-peer

file sharing [5], [6].

To degrade the anonymity service provided by anonymous

communication systems, traffic analysis attacks have been

studied [3], [7]–[14]. Existing traffic analysis attacks can be

categorized into two groups: passive traffic analysis and active

watermarking techniques. Passive traffic analysis technique

will record the traffic passively and identify the similarity

between the sender’s outbound traffic and the receiver’s

inbound traffic based on statistical measures [7]–[9], [15], [16].

Because this type of attack relies on correlating the timings of

messages moving through the anonymous system and does not

change the traffic characteristics, it is also a passive timing

attack. For example, Serjantov et al. [7] proposed a passive

packet-counting scheme to observe the number of packets of a

connection that arrives at a mix node and leaves a node.

However, they did not elaborate how packet counting could be

done. To improve the accuracy of attacks, the active

watermarking technique has recently received much attention.

The idea of this technique is to actively introduce special

signals (or marks) into the sender’s outbound traffic with the

intention of recognizing the embedded signal at the receiver’s

inbound traffic [13], [14], [17].

Figure 1: Tor Network.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org 982

In this paper, focus is on the active watermarking technique,

which has been active in the past few years. For example, Yu et

al. [13] proposed a flow-marking scheme based on the direct

sequence spread spectrum (DSSS) technique by utilizing a

pseudo-noise (PN) code. By interfering with the rate of a

suspect sender’s traffic and marginally changing the traffic rate,

the attacker can embed a secret spread-spectrum signal into the

target traffic. The embedded signal is carried along with the

target traffic from the sender to the receiver, so the investigator

can recognize the corresponding communication relationship,

tracing the messages despite the use of anonymous networks.

However, in order to accurately confirm the anonymous

communication relationship of users, the flow-marking scheme

needs to embed a signal modulated by a relatively long length

of PN code, and also the signal is embedded into the traffic

flow rate variation. Houmansadr et al. [14] proposed a non

blind network flow watermarking scheme called RAINBOW

for stepping stone detection. Their approach records the traffic

timing of the incoming flows and correlates them with the

outgoing flows. This approach also embeds watermarks into the

traffic by actively delaying some packets. The watermark

detection problem was formalized as detecting a known spread-

spectrum signal with noise caused by network dynamics.

Normalized correlation is used as the detection scheme. Their

approach can classify a typical SSH connection as a stepping

stone connection in 3 min. As we can see, it is hard for the

flow-marking technique to deal with the short communication

sessions that may only last for a few seconds.

A successful attack against anonymous communication systems

relies on accuracy, efficiency, and detectability of active

watermarking techniques. Detectability refers to the difficulty

of detecting the embedded signal by anyone other than the

attackers. Efficiency refers to the quickness of confirming

anonymous communication relationships among users.

Authors in [22] proposed a new cell-counting-based attack

against Tor, a real-world, circuit-based low-latency anonymous

communication network. This attack is a novel variation of the

standard timing attack. It can confirm anonymous

communication relationship among users accurately and

quickly and is difficult to detect. In this attack, the attacker at

the malicious exit router detects the data transmitted to a

suspicious destination (e.g., server Bob). The attacker then

determines whether the data is a relay cell or a control cell in

Tor. After excluding the control cells, the attacker manipulates

the number of relay cells in the circuit queue and flushes out all

cells in the circuit queue. In this way, the attacker can embed a

signal (a series of “1” or “0” bits) into the variation of the cell

count during a short period in the target traffic. An accomplice

of the attacker at the entry onion router detects and excludes the

control cells, records the number of relay cells in the circuit

queue, and recovers the embedded signal. The signal embedded

in the target traffic might be distorted because the cells carrying

the different bits (units) of the original signal might be

combined or separated at middle onion routers. To address this

problem, authors developed the recovery algorithms to

accurately recognize the embedded signal.

In this paper, we study the above problem in detail and propose

a solution to prevent this kind of attack in the network.

2. LITERATURE SURVEY

In this section, we first overview the components of Tor. We

then present the procedures of how to create circuits and

transmit data in Tor and process cells at onion routers.

Tor is a popular overlay network for providing anonymous

communication over the Internet. It is an open-source project

and provides anonymity service for TCP applications [20]. As

shown in Fig. 1, there are four basic components in Tor.

1) Alice (i.e., Client): The client runs a local software called

onion proxy (OP) to anonymize the client data into Tor.

2) Bob (i.e., Server): It runs TCP applications such as a Web

service.

3) Onion routers (ORs): Onion routers are special proxies that

relay the application data between Alice and Bob. In Tor,

transport-layer security (TLS) connections are used for the

overlay link encryption between two onion routers. The

application data is packed into equal-sized cells (512 B as

shown in Fig. 2) carried through TLS connections.

4) Directory servers: They hold onion router information such

as public keys for onion routers. Directory authorities hold

authoritative information on onion routers, and directory caches

download directory information of onion routers from

authorities. A list of directory authorities is hard-coded into the

Tor source code for a client to download the information of

onion routers and build circuits through the Tor network.

2(a)

2(b)

2(b)

Figure 2: Cell Format.

Fig. 2 illustrates the cell format used by Tor. All cells have a 3-

B header, which is not encrypted in the onion-like fashion so

that the intermediate Tor routers can see this header. The other

509 B are encrypted in the onion-like fashion. There are two

types of cells: control cell shown in Fig. 2(a) and relay cell

shown in Fig. 2(b). The command field (Command) of a

control cell can be: CELL_PADDING, used for keep alive and

optionally usable for link padding, although not used currently;

CELL_CREATE or CELL_CREATED, used for setting up a

new circuit; and CELL_DESTROY, used for releasing a

circuit. The command field (Command) of a relay cell is

CELL_RELAY. Note that relay cells are used to carry

Circ_id(2B) Command(1B) RelayCommand(1B) Recognized(2B) Steam_id(2B) integrity(4B)

length(2B) Data(49)

Circ_id (2 B) Command(1B) Data(509B)

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org 983

TCP stream data from Alice to Bob. The relay cell has an

additional header, namely the relay header. There are numerous

types of relay commands (Relay Command), including

RELAY_COMMAND_BEGIN,

RELAY_COMMAND_DATA,

RELAY_COMMAND_END,

RELAY_COMMAND_SENDME,

RELAY_COMMAND_EXTEND,

RELAY_COMMAND_DROP,

and RELAY_COMMAND_RESOLVE. Note that all these can

be found in or.h in released source code package by Tor. In

Tor, an OR maintains a TLS connection to other ORs or OPs on

demand. The OP uses a way of source routing and chooses

several ORs (preferably ones with high bandwidth and high

uptime) from the locally cached directory, downloaded from

the directory caches. The number of the selected ORs is

referred as the path length. Here there is use the default path

length of three as an example. The OP iteratively establishes

circuits across the Tor network and negotiates a symmetric key

with each OR, one hop at a time, as well as handles the TCP

streams from client applications. The OR on the other side of

the circuit connects to the requested destinations and relays the

data.

Figure 3: Processing of cells.

Fig. 3 illustrates the procedure of processing cells at onion

routers. Note that the cells mentioned below are all

CELL_RELAY_DATA cells, which are used to carry end-to-

end stream data between Alice and Bob. To begin with, the

onion router receives the TCP data from the connection on the

given port A. After the data is processed by TCP and TLS

protocols, the data will be delivered into the TLS buffer of the

connection. When there is pending data in the TLS buffer, the

read event of this connection will be called to read and process

the data. The connection read event will pull the data from the

TLS buffer into the connection input buffer. Each connection

input buffer is implemented as a linked list with small chunks.

The data is fetched from the head of the list and added to the

tail. After the data in the TLS buffer is pulled into the

connection input buffer, the connection read event will process

the cells from the connection input buffer one by one. As stated

earlier, the cell size is 512 B. Thus, 512-B data will be pulled

out from the input buffer every time until the data remaining in

the connection input buffer is smaller than 512 B. Since each

onion router has a routing table that maintains the map from

source connection and circuit ID to destination connection and

circuit ID, the read event can determine that the transmission

direction of the cell is either in the forward or backward

direction. Then, the corresponding symmetric key is used to

decrypt/encrypt the payload of the cell, replace the present

circuit ID with the destination circuit ID, and append the cell to

the destination circuit queue. If it is the first cell added to this

circuit queue, the circuit will be made active by being added

into a double-linked ring of circuits with queued cells waiting

for a room to free up on the output buffer of the destination

connection. Then, if there is no data waiting in the output buffer

for the destination connection, the cell will be written into the

output buffer directly, and then the write event of this circuit is

added to the event queue. Subsequent incoming cells are

queued in the circuit queue. When the write event of the circuit

is called, the data in the output buffer is flushed to the TLS

buffer of the destination connection.

Then, the write event will pull as many cells as possible from

the circuit queue of the currently active circuit to the output

buffer and add the write event of this circuit to the event queue.

The next write event can carry on flushing data to the output

buffer and pull the cells to the output buffer. In other words, the

cells queued in the circuit queue can be delivered to the

network via port B by calling the write event twice.

3. CELL COUNTING ATTACK

As i mentioned before, this attack intends to confirm that Alice

(client) communicates with Bob (server) over Tor. In order to

do so, we assume that the attacker controls a small percentage

of exit and entry onion routers by donating computers to Tor.

This assumption is also used in other studies [3], [10], [18],

[19]. The assumption is valid since Tor is operated in a

voluntary manner [21]. For example, attackers may purchase

Amazon EC2 virtual machines, which can be put into Tor. The

attack can be initiated at either the malicious entry onion router

or exit onion router, up to the interest of the attacker. In the rest

of the paper, we assume that the attack is initiated at an exit

onion router connected to server Bob and intends to confirm

that Alice communicates with a known server Bob.

The basic idea is as follows. An attacker at the exit onion router

first selects the target traffic flow between Alice and Bob. The

attacker then selects a random signal (e.g., a sequence of binary

bits), chooses an appropriate time, and changes the cell count of

target traffic based on the selected random signal. In this way,

the attacker is able to embed a signal into the target traffic from

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org 984

Bob. The signal will be carried along with the target traffic to

the entry onion router connecting to Alice. An accomplice of

the attacker at the entry onion router will record the variation of

the received cells and recognize the embedded signal. If the

same pattern of the signal is recognized, the attacker confirms

the communication relationship between Alice and Bob. As

shown in Fig. 4, the workflow of the cell-counting-based attack

is illustrated as follows.

Figure 4: Workflow of Attack.

Step 1: Selecting the Target: At a malicious exit onion router

connected to the server Bob, the attacker will log the

information, including server Bob’s host IP address and port

used for a given circuit, as well as the circuit ID. The attacker

uses CELL_RELAY_DATA cells since those cells transmit the

data stream. According to the description of Tor in Section II,

we know that the attacker is able to obtain the first cell

backward to the client, which is a CELL_CREATED cell and is

used to negotiate a symmetric key with the middle onion router.

The second cell backward to the client will be a

CELL_RELAY_CONNECTED cell. All sequential cells will

be CELL_RELAY_DATA cell, and the attacker starts the

encoding process shown in Step 2.

Step 2: Encoding the Signal: In previous section, there was

introduction of the procedure of processing cells at the onion

routers. The CELL_RELAY_DATA cells will be waiting in the

circuit queue of the onion router until the write event is called.

Then, the cells in the circuit queue are all flushed into the

output buffer. Hence, the attacker can benefit from this and

manipulate the number of cells flushed to the output buffer all

together. In this way the attacker can embed a secret signal (a

sequence of binary bits, i.e., “10101”) into the variation of the

cell count during a short period in the target traffic.

Particularly, in order to encode bit “1,” the attacker flushes

three cells from the circuit queue. In order to encode bit “0,”

the attacker flushes only one cell from the circuit queue. In

order to accurately manipulate the number of the cells to be

flushed, the attacker needs to count the number of cells in the

circuit queue. Once the number of the cells is adequate (i.e,,

three cells for encoding “1” bit of the signal, and one cell for

“0” bit of the signal), the attacker calls the circuit write event

promptly and all the cells are flushed to the output buffer

immediately.

Step 3: Recording Packets: After the signal is embedded in the

target traffic in Step 2, it will be transmitted to the entry onion

router along with the target traffic. An accomplice of the

attacker at the entry onion router will record the received cells

and related information, including Alice’s host IP address and

port used for a given circuit, as well as the circuit ID. Since the

signal is embedded in the variation of the cell count for

CELL_RELAY_DATA cells, an accomplice of the attacker at

the entry onion router needs to determine whether the received

cells are CELL_RELAY_DATA cells. This can be done

through a way similar to the one in Step 1.We know that the

first two cells that arrive at the entry onion router are

CELL_RELAY_EXTENDED cells, and the third one is a

CELL_RELAY_CONNECTED cell. After these three cells, all

cells are a CELL_RELAY_DATA cell. Therefore, starting

from this point, the attacker records the cells arriving at the

circuit queue.

Step 4: Recognizing the Embedded Signal: With recorded

cells, the attacker enters the phase of recognizing the embedded

signal. In order to do so, the attacker uses our developed

recovery mechanisms to decode the embedded signal. Once the

original signal is identified, the entry onion router knows

Alice’s host IP address, and the exit onion router knows Bob’s

host IP address of the TCP stream. Therefore, the attacker can

link the communication relationship between Alice and Bob.

As mentioned earlier, when the signal is transmitted through

Tor, it will be distorted because of network delay and

congestion. For example, when the chunks of three cells for

encoding bit “1” arrive at the middle onion router, the first cell

will be flushed to the output buffer promptly if there is no data

in the output buffer. The subsequent two cells are queued in the

circuit queue. When the write event is called, the first cell is

sent to the network, while the subsequent two cells are flushed

into the output buffer. Therefore, the chunks of the three cells

for carrying bit “1” may be split into two portions. The first

portion contains the first cell, and the second portion contains

the second and third cell together.

4. DETAILS OF PROPOSED ATTACK

PREVENTION METHOD

As we discussed the attack in the previous section, we found

that by variation of cell relay packet processing at exit onion

router, the attacker is able to encode certain signals for each

flow and thereby was able to break the anonymity of the

network. To eliminate this variation, i propose a solution based

on the onion routers in the mid routers in the TOR networks.

The basic of the proposed solution is that onion routers at the

middle layer has to observe the number of RELAY packets

being forwarded for a connection id in the upward direction

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org 985

and must maintain the same value for the RELAY packets

arriving from the onion router. This way it ensures that for the

connection arriving from a entry router, there is no variation in

the relay packet forwarding at all. By denying the variations the

attacker at the exit router even though inserts variation by

flushing the relay packet differently, at the middle router uses

the same fixed rate, this makes no variation appear at the entry

router.

The detailed working of the proposed solution is given below

At the mid onion routers following processing occur. A mid

onion router may be catering to packet from different incoming

onion router. For each of them it has to allocate unique

outgoing flow rate.

Onion Router 1

Onion Router 2

Onion Router 2

Mid onion
Router

Exit Router[r1,r2,r3]

Figure 5: processing in Mid Router.

For the flow from different routers, the mid onion router has to

allocate a different outgoing rate of relay packets and it must

maintain the same value for all the connection from that onion

router.

If this procure is followed in all the mid routers, any entry

onion router for all the incoming connections, the same rate of

relay packet is maintained. This makes the entry router not able

to detect any signal.

At the mid onion router, to ensure the rate packet must be

buffered. This will consume extra memory space at the mid

onion routers but to provide anonymity this cost is bearable.

5. PERFORMANCE ANALYSIS

I implement the proposed solution in NS2 and analyze the

performance of the system in terms of average buffer needed at

each mid onion router. I do this for TOR network of size of 20

and i create many TOR connections from 20 to 40 connections

per seconds between the nodes and measure the average

increase in buffer size at each router.

Figure 6: Number of Connections per second versus buffer size

Through performance i check the average buffer size needed

for two connection durations of 1min and 2 min and see that

buffer size needed. This additional buffer size must be

provisioned at the router for providing safety against anonymity

leakage attacks.

CONCLUSIONS

In this paper, i introduced a prevention solution against cell-

counting-based attack against Tor. By disallowing the variation

for shorter period we are able to stop attackers from inserting

signal by using the variation in processing of relay cell. By

denying this variation, we are able to avoid the cell counting

attack and prevent the anonymity in the tor network.

REFERENCES

[1] Q. X. Sun, D. R. Simon, Y. Wang, W. Russell, V. N.

Padmanabhan, and L. L. Qiu, “Statistical identification

of encrypted Web browsing traffic,” in Proc. IEEE S&P,

May 2002, pp. 19–30.

[2] X. Fu,Y. Zhu, B.Graham, R. Bettati, andW. Zhao, “On

flow marking attacks in wireless anonymous

communication networks,” in Proc. IEEE ICDCS, Apr.

2005, pp. 493–503.

[3] L. Øverlier and P. Syverson, “Locating hidden servers,”

in Proc. IEEE S&P, May 2006, pp. 100–114.

[4] G. Danezis, R. Dingledine, and N. Mathewson,

“Mixminion: Design of a type III anonymous remailer

protocol,” in Proc. IEEE S&P, May 2003, pp. 2–15.

[5] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:

The secondgeneration onion router,” in Proc. 13th

USENIX Security Symp., Aug. 2004, p. 21

[6] “Anonymizer, Inc.,” 2009 [Online]. Available:

http://www. anonymizer.com/

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org 986

[7] A. Serjantov and P. Sewell, “Passive attack analysis for

connectionbased anonymity systems,” in Proc.

ESORICS,Oct. 2003, pp. 116–131.

[8] B. N. Levine,M. K. Reiter, C.Wang, andM. Wright,

“Timing attacks in low-latency MIX systems,” in Proc.

FC, Feb. 2004, pp. 251–565.

[9] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On

flow correlation attacks and countermeasures in Mix

networks,” in Proc. PET, May 2004, pp. 735–742.

[10] S. J. Murdoch and G. Danezis, “Low-cost traffic

analysis of Tor,” in Proc. IEEE S&P, May 2006, pp.

183–195.

[11] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D.

Sicker, “Lowresource routing attacks against anonymous

systems,” in Proc. ACM WPES, Oct. 2007, pp. 11–20.

[12] X.Wang, S. Chen, and S. Jajodia, “Network flow

watermarking attack on low-latency anonymous

communication systems,” in Proc. IEEE S&P, May

2007, pp. 116–130.

[13] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao,

“DSSS-based flow marking technique for invisible

traceback,” in Proc. IEEE S&P, May 2007, pp. 18–32.

[14] N. B. Amir Houmansadr and N. Kiyavash,

“RAINBOW: A robust and invisible non-blind

watermark for network flows,” inProc. 16th NDSS, Feb.

2009, pp. 1–13.

[15] V. Shmatikov and M.-H. Wang, “Timing analysis in

low-latency MIX networks: Attacks and defenses,” in

Proc. ESORICS, 2006, pp. 18–31.

[16] V. Fusenig, E. Staab, U. Sorger, and T. Engel, “Slotted

packet counting attacks on anonymity protocols,” in

Proc. AISC, 2009, pp. 53–60.

[17] X. Wang, S. Chen, and S. Jajodia, “Tracking

anonymous peer-to-peer VoIP calls on the internet,” in

Proc. 12th ACM CCS, Nov. 2005, pp. 81–91.

[18] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D.

Sicker, “Lowresource routing attacks against anonymous

systems,” Univ. Colorado Boulder, Boulder, CO, Tech.

Rep., Aug. 2007.

[19] X. Fu, Z. Ling, J. Luo, W. Yu,W. Jia, and W. Zhao,

“One cell is enough to break Tor’s anonymity,” in Proc.

Black Hat DC, Feb. 2009 [Online].

[20] Available: http://www.blackhat.com/presentations/bh-

dc-09/Fu/ BlackHat-DC-09-Fu-Break-Tors-

Anonymity.pdf

[21] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:

Anonymity online,” 2008 [Online]. Available:

http://tor.eff.org/index.html.en.

[22] Zheng Ling “A New cell counting based attack against

TOR”.

