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Abstract 
This paper examines the problem of two dimensional unsteady free convection oscillatory flow of an Elastico-viscous fluid past an 

impulsively started infinite vertical plate with constant heat flux and heat generation. The flow is subjected to a constant suction. 

Using perturbation techniquethe expressions are obtained for velocity, temperature distribution and skin friction. The results obtained 

are discussed for various numerical values of the parameters entered into the equations governing the flow, with help of graphs.  

 

Index terms:Elastico-viscous fluid, free convection, Porous medium, vertical plate. 

--------------------------------------------------------------------------------***----------------------------------------------------------------------------- 

1. INTRODUCTION 

The boundary layer phenomenon in non-Newtonian fluids was 

studied by a few research workers, whose constitutive 

equations are characterized by Walters [22], exhibits a 

boundary layer phenomenon. The effect of unsteady 

fluctuations of the free velocity on the flow in the boundary 

layer of an incompressible elastico-viscous liquid [Walters 

fluid (model B')] past an infinite porous plate with constant 

suction velocity was discussed by Kaloni [8]. Flow and heat 

transfer in the boundary layer on a continuous moving surface 

was considered by Tsouet. al.[20]. Vajravelu [21] studied the 

solution of boundary layer flow and heat transfer over a 

continuous porous surface moving in an oscillating free 

stream. Unsteady free convection flow of an incompressible 

fluid along a moving surface in an oscillating free stream was 

presented by Sharma and Gocher [15]. 

 

Boundary layer behavior over a continuous moving surface is 

an important type of flow occurring in several engineering 

processes, for example materials manufactured by extrusion 

processes and heat treated materials traveling between a feed 

roll and a wind up roll or on conveyor belts possesses the 

characteristics of a moving continuous surface. In view of 

these applications, Sakiadis [14] initiated the study of 

boundary layer flow over a continuous solid surface moving 

with constant speed. Due to entrainment of ambient fluid, this 

boundary layer flow is quite different than boundary layer 

flow over a semi-infinite flat plate. Erickson et. al. [6] 

extended this problem to the case in which the transverse 

velocity at the moving surface is non zero, with heat and mass 

transfer in the boundary layer being taken into account. Beg et 

al. [1] have presented an analysis on unsteady natural 

convection flow past an infinite vertical plate embedded 

within a highly porous medium under the influence of uniform 

magnetic field, wherein, the suction velocity is subjected to 

small amplitude oscillations in time about the steady non-zero 

mean suction velocity.   

 

The unsteady free convective flow of an elastico-viscous fluid 

was studied by Soundalgekar [18]. Revankar et al [13], Singh 

[16] discussed the flow of elastico-viscous fluid past 

impulsively started plate. Hayat et al. [7] discussed the flow of 

visco-elastic fluid past an oscillating plate, in which he 

discussed the influence of suction/injection on velocity 

distribution. In many problems, particularly those involving 

the cooling of electrical and nuclear component, the wall heat 

flux is specified. In such problem overheating burn out and 

melt down are very important issues. The problems with 

prescribed heat flux are special case of the vast analytical 

accessible class of problem. Lee et al. [9], Malarvizhi et al.   

[11], Burak et al. [2],Kolani [8] and Pantokraters [12] are 

some of the researchers who have investigated the convection 

flow with prescribed heat flux condition. Effects of the 

chemical reaction and radiation absorption on free convection 

flow through porous medium with variable suction in the 

presence of uniform magnetic field were studied by 

SudheerBabu and Satyanarayana [19]. Devikaet.al [5]MHD 

Oscillatory flow of a Visco Elastic fluid in a Porous channel 

with chemical Reaction Singh [17]Exact solution of an 

oscillatory MHD flow in a channel filled with porous medium. 

Chenna Kesavaiah and Sudhakaraiah [4]A note on heat 

transfer to magnetic field Oscillatory flow of a visco-elastic 

fluid. 

 



IJRET: International Journal of Research in Engineering and TechnologyISSN: 2319-1163 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org960 

Therefore, the objective of the present investigation in to study 

the two dimensional unsteady free convection oscillatory flow 

of an elastico-viscous fluid past an impulsively started infinite 

vertical plate in the presence of constant suction, heat flux and 

heat generation. The effects of elastic parameter on velocities 

and temperature fluids are discussed in detail. Also the results 

are in very good agreement with the results of Chaudhary [3] 

in the absence of heat absorption. 

 

2. MATHEMATICAL ANALYSIS 

We consider a two dimensional, unsteady free convection flow 

of an elastico-viscous fluid past a steadily moving infinite 

porous plate with constant suction, heat flux and heat 

generation. In Cartesian co-ordinate system the x axis taken 

along the plate in the upward direction, being the direction of 

the flow and 
y

 axis is taken normal to the plate. Let the 

component of velocity 
,u v 

 along 
,x y 

  directions 

respectively. Under these assumptions the appropriate 

governing equations of continuity momentum and energy are 

given by  
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The boundary conditions are  
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Where 0U
is the constant velocity of moving porous plate and 

T

 is its temperature, 

q
 is the heat flux per unit area, per unit 

time. 

The continuity equation (1) gives 

 

0v v 
     (5) 

 

Where 0v ( 0)
 is suction velocity of the fluid through the 

porous plate. 

 

Where t   is time,  
, vu 

  are the velocity components along 

and perpendicular to the porous plate, 
g

 acceleration due to 

gravity, T   the fluid temperature inside the thermal boundary 

layer, 
T

 temperature away to the porous plate,   kinematic 

viscosity, k the elastic parameter,   the thermal conductivity 

of the plate, pc
 the specific heat of the fluid under constant 

pressure, 


 the coefficient of volumetric expansion of the 

fluid, U is the free stream velocity,k is Elastic parameter, wT 
 

is Constant velocity of moving   porous plate temperature,  

U0is the constant velocity of moving porous plate, v0   the 

suction velocity of the fluid through the porous plate,   is  

kinematic viscosity,    density of the fluid,   is  non-

dimensional temperature,  is coefficient of volumetric 

expansion of the fluid. 

 

Now in order to non-dimensionalize equations (2) and (3) we 

introduce the following non-dimensional quantities 
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In view of above non-dimensional quantities, equations (2) 

and (3) becomes  
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The corresponding boundary conditions are 



IJRET: International Journal of Research in Engineering and TechnologyISSN: 2319-1163 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org961 

 

 

0, 1, 1

, 0 ,

y u
y

y u U t






   



  
   (9) 

 

wherek is Elastic parameter, PrPrandtl number,  Q   The heat 

flux per unit area, per    unit time, 0Q
 Dimensional Heat 

absorption coefficient, 


    Heat source parameter 

 

In order to solve coupled nonlinear systems, we assume that 

the following Lighthill[10], i.e., there exist a mean steady flow 

and it is superimposed on the unsteady oscillatory flow. Then, 

in the neighborhood of the plate, we represent the velocity and 

temperature fields as  
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and for free stream 
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where  is a small constant quantity << 1. 

 

Putting equation (10) in (7) and (8) and equating like powers 

and neglecting coefficient of 
2 , we get 

 

0 0 0 0ku u u G    
    (11) 

 

 1 1 1 1 11ku kin u u inu in G       
  (12) 

 
2

0 0 0 0P P PEu      
   (13) 

 

 1 1 1 0 12P in P PEu u         
  (14) 

 

where prime denotes differentiation with respect to y. 

Corresponding boundary conditions are  
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Now, equations (11) and (12) are third-order differential 

equations when 0k   and for 0k  they reduced to 

equations governing the Newtonian fluid. Hence, the presence 

of the elasticity of the fluid increases the order of the 

governing equations from two to three and therefore, they 

need three boundary conditions for their unique solution. But 

there are prescribed only two boundary conditions in equation 

(15). Therefore for a unique solution, we follow Beard and 

Walters [22] and assume that the solution in the form 
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Where 
 , 0,1i iu i 

 are the mean 
 0i

 and the 

fluctuating 
 1i

 parts of velocity and temperature 

respectively, as k  is small for elastico-viscous fluid equation 

(16) is valid. Introducing (16) into (11)-(14), we get 
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and the corresponding boundary conditions are  
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where dash denotes differentiation with respect to y. 

 



IJRET: International Journal of Research in Engineering and TechnologyISSN: 2319-1163 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 06 | Jun-2013, Available @ http://www.ijret.org962 

01 02 11 12

01 02 11 12

1, 0, 1, 0

0, 0, 0, 0

u u u u
y

   

   


      
 

The system of equations (17) – (24) are still coupled 

nonlinear, we can assume that  
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where is E  Eckert number and very small for an 

incompressible fluid. 

 

Substituting equation (26) in (17) - (24), equating the 

coefficient of different powers of  E  and neglecting 

coefficient of   
2E  and using equation (25) we get 
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and the corresponding boundary conditions are  
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where dashes denotes differentiation with respect to 
y
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The solutions of the above mentioned differential equations 

consistent with the boundary conditions (43) for unsteady flow 

field   have been obtained but not presented here for the sake 

of brevity. 

 

With the convection those real parts of complex number have 

physical significance in the problem, the velocity and 

temperature field can be expressed in fluctuating part as  

 

     

     

0

0

, cos sin

, cos sin

r i

r i

u y t u y M nt M nt

y t y T nt T nt



  

  

  
 (44) 

where 

1

1

r i

r i

M i M u

T iT 

  


       (45) 

 

Hence expressions for transient velocity, temperature field for 
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Skin friction 

Skin friction 
 

 at plate, in terms of amplitude and phase is  
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and phase angle 

tan i

r

M

M
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The expressions (46) – (47) and (48) – (49) will be used for 

numerical calculation of the velocity, temperature field and for 

the skin friction and phase of the skin friction respectively. 

 

3. RESULT AND DISCUSSIONS 

The purpose of this study is to bring out the effects of elastico-

viscous parameter and heat absorption parameter on the free 

convective flow and heat transfer characteristics. The elastico-

viscous effect is exhibited through the non-dimensional 

parameter k. The corresponding results for Newtonian fluid 

can be deduced from the above results by setting k= 0 and it is 

worth mentioning here that these results coincide with that of 

Ahmed et. al. Numerical evaluation of analytical results 

reported in the previous section was performed and a 

representative set of results is reported graphically for two 

cases viz. (i) for cooling of the plate (G > 0) and (ii) for 

heating of the plate (G < 0). The obtained results are illustrated 

in Figs. 1 to 14. The values of P (Prandatl number) are chosen 

in such a way that it represent Gasoline at 20°C (P = 9.4) and 

water at 4°C (P = 11.13), whereas E is taken small for 

incompressible fluid. 

 

For the case of different values of thermal Grashofnumber G , 

the mean velocity profiles are shown in figure 1. As expected, 

it is observed that an increase in G  leads to rise in the values 

of velocity due to enhancement in boundary force. In addition 

the curve show that the peak values of the velocity increases 

rapidly near the plate and there after it decreases as distance 

(y) increases. It is also observed that the mean velocity of the 

elastic-viscous fluid is greater than the Newtonian fluid. 

Figures 2 and 3 are plotted mean velocity profiles against y for 

different values of heat absorption parameter


.  It is observed 

that in both the cases mean velocity of the elastico – viscous 

fluid is less than that of Newtonian fluid. The maximum 

velocity occurs near the plate and thereafter it decreases as 

distance (y) increases.  An increase in 


 leads to decrease in 

the mean velocity. From figure 4 it is observed that mean 

velocity of the elastico – viscous fluid is greater than that of 

Newtonian fluid. The maximum velocity occurs near the plate 

and thereafter it decreases as distance (y) increases. An 

increase in E  the mean velocity increases. Figures(5)-(11) 

represent the temperature profiles for 0G   and 0G  , 

respectively for different values of Eckret number (E), 

Grashof number (G), Prandtl number (P) and heat absorption 

number (


). It is observed that for cooling of the plate (G > 

0), an increase in the above said parameters decreases the 

temperature. The increase of Prandtl number results in the 

decrease of temperature distribution. This is due to the fact 

that there would be a decrease of thermal boundary layer 

thickness with the increase of Prandtl number.  In the case of 

heating of the plate i.e. for G < 0, an increase in E leads to fall 

in the temperature (fiure-9). It is also concluded that for 

electrolytic solution, temperature falls exponentially. While 

reversal effect is observed (fig10 and 11) for P and 


  . It is 

observed from figure 12 that the mean velocity of the elastico 

– viscous fluid is greater than that of Newtonian fluid. The 

maximum velocity occurs near the plate and thereafter it 

decreases as distance (y) increases. An increase in Prandtl 

number P  the mean velocity decreases.  Figure 13 gives the 

mean velocity profile for heating of the plate
 0, 0G E 

. 

From this we conclude that mean velocity of the Newtonian 

fluid is less than that of elastico – viscous fluid. The minimum 

value of the velocity occurs near the plate and it increases as 

the y increases. Velocity distribution decreases as E increases. 

Figure 14 gives the mean velocity profile for heating of the 

plate 
 0, 0G E 

.From this we conclude that mean 

velocity of the Newtonian fluid is greater than that of elastico 

– viscous fluid. The minimum value of the velocity occurs 

near the plate and it increases as the y increases. The velocity 

profiles decreases with increasing Prandtl number. Physically, 

this is true because the increase in the Prandtl number is due to 

increase in the viscosity of the fluid which makes the fluid 

thick and hence a decrease in the velocity of the fluid. 
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Fig 2.Mean velocity profiles for cooling plate, E = 0.01, G > 0                       
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Fig 11. Mean velocity for heating of the plate E= - 0.01, G < 0                                       
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