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Abstract 
The objective of the present study is the identification of the characteristics of monthly Sq variations for geomagnetic components D, 

H and Z for a time series at four Indian geomagnetic observatories, namely, Alibag (ALB), Hyderabad (HYD), Pondicherry (PON) 

and Visakhapatnam (VIZ). To study the behavior of Sq monthly variation, a two state Markov chain model is employed. With the help 

of Markov transition probabilities, one can guess the behavior of a time series data. 

 

Index Terms:  Geomagnetic field – Geomagnetic Sq variation– Stochastic process – Markov chain model – Bernoulli 

trials 

-----------------------------------------------------------------------***-----------------------------------------------------------------------

1. INTRODUCTION 

Significant contribution to research in geomagnetism started 

from India as back as in 19th century with the pioneering work 

of Brown and Chambers and Moos. The geographical location 

of India plays a pivotal role with the latitudinal coverage 

existing from equator to the focus of the low latitude Sq 

current system.  

 

Variations in the natural magnetic field are measured at the 

Earth's surface and elsewhere in the Earth's magnetosphere ( 

for example, at the geostationary orbit ). These are field 

changes with periodicities from about 0.3 second to hundreds 

of years. (These boundaries are set to distinguish geomagnetic 

variations from the quasipermanent field and higher - 

frequency waves). Many of these observed variations from-

very short periods (seconds, minutes, hours) to daily, seasonal, 

semiannual, solar-cycle (11-years), and secular (60–80 years) 

periods - arise from sources that either are external to the 

Earth (but superposed upon the larger, mainly dipolar field) or 

internal to the Earth (the magnetic-dipole and higher - 

harmonic trends and variations on the scales of hundreds and 

even thousands of years). The daily and seasonal motions of 

the atmosphere at ionospheric altitudes cause field variations 

that are smooth in form and relatively predictable, given the 

time and location of the observation. During occasions of high 

solar–terrestrial disturbance activity that give rise to aurorae 

(northern and southern lights) at high latitudes, very large 

geomagnetic variations occur that even mask the quiet daily 

changes. These geomagnetic variations are so spectacular in 

size and global extent that they have been named geomagnetic 

storms and sub storms, with the latter generally limited to the 

Polar Regions. 

 

Solar-terrestrial-physics associated studies were mainly 

utilizing long series of geomagnetic field observations at the 

Indian Observatories and also worldwide network of 

geomagnetic data. The Geomagnetic Observatory data were 

also used for studies on Interplanetary Magnetic Field (IMF) 

associations, Solar flare effects etc. The continuously recorded 

data from the Institute gives an opportunity to decipher the 

long-term secular changes as well as the daily variations of the 

magnetic components that is basically the reflection of the 

ionospheric and magnetospheric changes occurring over the 

region. Thus, the variations in the geomagnetic field can be 

used as a diagnostic tool for understanding the internal 

structure of the Earth as well as the dynamics of the upper 

atmosphere and magnetosphere. 

 

A stochastic process is the mathematical abstraction of an 

empirical process whose development is governed by 

probabilistic laws. Markov chain is a class of stochastic 

process which has got certain applications.  Feller (1968) 

applied stochastic processes in several situations. Lawless 

(1982) established Markov and statistical models for life time 

applications. Anderson (1976) used Box-Jenkins approach to 

study stochastic models. Chatfield (1977) developed some 

stochastic models for forecasting, such as, queuing models, 

renewal process, etc. Recently researchers developed 

switching models to analyze the behavior of time series.  

Milkovitch (1977) compared semi-Markov and Markov 

models in forecasting. Colin (1968) estimated Markov 

transition probabilities for certain data.  

 

With the help of Markov transition probabilities, one can 

guess the behavior of a time series data. Kaplan (1975) has 

studied the ergodicity of a Markov chain. 

 

2. OBJECTIVE: 

The objective of the present study is the identification of the 

characteristics of monthly Sq variations for geomagnetic 
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components D, H and Z for a time series at four Indian 

geomagnetic observatories, namely, Alibag (ALB), Hyderabad 

(HYD), Pondicherry (PON) and Visakhapatnam (VIZ). 

 

2.1 DATA USED: 

This research work is based on the data of Indian geomagnetic 

observatories only. Data for monthly variations of the 

geomagnetic components D, H and Z, from January 1995 to 

December 1997, for Alibag, Hyderabad, Pondicherry and 

Visakhapatnam observatories have been obtained from the 

volumes of Indian Magnetic data. 

 

The monthly Sq variations for geomagnetic components D, H 

and Z for a time series of 36 months from January 1995 to 

December 1997 at four Indian geomagnetic observatories, 

namely, Alibag (ALB), Hyderabad (HYD), Pondicherry 

(PON) and Visakhapatnam (VIZ) is considered. 

 

3. APPLICATION OF STOCHASTIC MODELING 

TO GEOMAGNETIC Sq VARIATION: 

A TWO STATE MARKOV CHAIN MODEL: 

A Markov chain is considered which has two states namely 0 

and 1. 

 

3.1 BERNOULLI TRIAL: 

A Bernoulli trial is an experiment with only two possible 

outcomes namely success and failure which are denoted 

respectively by S and F. Example of such an experiment is 

testing the quality of a finished product and determining 

whether it is defective (F) or non – defective (S). One may 

denote S and F respectively by 1, 0.[5]. The probability 

distribution of the random variable in this case according to 

Bernoulli trial is provided below. 

 

3.2 PROBABILITY DISTRIBUTION  

 

Random 

Variable x 

 0 1  

 Probability 

p(x) 

1-p p Total 

= 1 

 

 

Bernoulli trial involves two states. One of the states is 

considered as success and denoted by 1. The other state is 

considered as failure and denoted by 0. 

 

3.3 DEPENDENT BERNOULLI TRIALS: 

In the dependent Bernoulli trials, the probability of success or 

failure at each trial depends on the outcome of the previous 

trial. 

3.3.1 TRANSITION PROBABILITIES FOR 

DEPENDENT BERNOULLI TRIALS: 

Consider dependent Bernoulli trials. If the nth trial results in 

failure then the probability of failure at the (n+1)th trial is 

taken as (1- α) while the probability of success  at  the (n+1)th  

trial  is assumed  to  be α. Similarly if the result in nth trial is 

success, then the probabilities of success and failure at the 

(n+1)th trial  are taken as (1-ß) and ß respectively. i.e., if the 

system is in state 0 at time n, then the probability of being in 

state 0 at time (n+1) is taken as (1- α) and the probability of 

being in state 1 at time (n+1) is taken as α. Similarly if the 

system is in state 1 at time n, then the probability of being in 

state 1 at time (n+1) is taken as (1- ß) and the probability of 

being in state 0 at time (n+1) is taken as ß. These probabilities 

are called transition probabilities.  

 

They can be written in the form of a matrix as follows. 

                         (n+1)th trial 

               nth  trial     state 0        state 1 

 

P       =   state 0     (1- α)             α                     ( 1 )  

                 state 1          ß            (1- ß)           

 

The matrix provided by equation (1) is called the matrix of 

transition probabilities. The element in (i,j)th position of the 

matrix denotes the conditional probability of a transition state j 

at time (n+1), given that the system was in state i at time n. 

 

n – STEP TRANSITION PROBABILITIES: 

It is assumed that the initial probabilities for the system to be 

in state 0 or 1 are given by the row vector p(0) = ( p0(0)   ,  

p1(1)  ). Let the row vector p(n) = ( p0(n) ,  p1(n) ) denote the 

probabilities for the system to be in state 0 or 1 at time n. The 

latter is referred to as the vector of the nth step transition 

probabilities. 

 

RECURRENCE RELATION 

A relation of the form 

 

f(n+1) = k f(n) 

 

For n= 1, 2, 3……, where k is a constant is called recurrence 

relation. This relation provides the link between f(n+1) and 

f(n). Using this relation, one can find the value of ‘f’ at the 

stage (n+1) by means of the value of ‘f’ at the stage ‘n’. 

 

Consider the event of the system being in state 0 at time n. 

This event can occur in two mutually exclusive ways: either 

state 0 was occupied at time (n-1) and no transition out of state 

0 occurred at time n. The probability for this to happen is p(n-

1) (1- α); alternatively state 1 was occupied at time (n-1) and a 

transition from state 1 to state 0 occurred at time n; this has the 

probability p(n-1)  ß. These possibilities can be represented in 

the form of a recurrence relation as follows: 
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       p0(n)          =       p0(n-1) (1- α) + p1(n-1) ß 

 

       p1(n)        =         p0(n-1)α + p1(n-1)(1-ß)                     (2)   

  

The equation ( 2 ) determines a dynamical system. This 

system is discrete in nature. The equation ( 2 ) can be rewritten 

in the form of a matrix equation as follows: 

 

  p0(n)          1- α      ß    p0(n-1) 

                  =                          (3) 

   p1(n)            α      1- ß        p1(n-1) 

 

Equation (3) provides an expression for the matrix  P(n)  in 

terms of the matrices P  and P(n-1) . By referring to the 

equations (1) and (3), it is seen that  

 

                          P(n)=PP(n-1)                        (4)          

 

Equation (4) shows how P(n) can be defined recursively.  

On iteration, one gets 

 

P(n-1) = PP (n-2) 

 

From this, it follows that 

 

P(n) =  PP (n-2)  =  P2 P(n-2) 

 

By successive application of the process of iteration, P(n) can 

be expressed in terms of P(0) as follows. 

 

P(n) = P(n) P(0)                             (5) 

 

STATE OCCUPATION PROBABILITIES:  

Given the initial probability matrix P(0) and the matrix of 

transition probability P, one can  find  the state occupation 

probabilities at any time n using the equation (5). Denote the 

(i,j)th element of P(n) by Pij(n) . The following two cases 

arise. 

 

CASE (i): If the system is initially in state 0, then one has 

 

p(0) = { 1,0} 

 

And , p(n) = { p00(n), p01(n) } 

 

CASE (ii): If the system is initially in state 1, then one has 

 

p(0) = { 0, 1 } and    p(n) = { p10(n), p11(n) } 

 

i.e.,  pij(n) = probability { state j at time n / state i at time 0 } 

The quantities pij(n) provide the n – step transition 

probabilities. 

 

 

 

 

CHARACTERISTIC ROOTS OF THE MATRIX P: 

Let I denote the identity matrix of order 2. The characteristic 

polynomial of the matrix P is the determinant of the matrix P- 

λI . On simplification, this polynomial is obtained as 

 

λ2 + (α + ß - 2) λ + 1- α – ß 

 

The characteristic equation of the matrix P is 

 

λ2 + (α + ß - 2) λ + 1- α – ß = 0        ( 6 ) 

 

The roots of the equation (6) are called the characteristic roots 

of the matrix P. The following two cases have to be 

considered. 

 

CASE (i):  α + ß = 0 

In this case, the equation ( 6 ) reduces to 

 

λ2  - 2λ + 1 = 0 

 

i.e., (λ - 1)2 = 0 

 

Thus, the characteristic root in this case is 1, with a 

multiplicity of two. 

 

CASE (ii):  α + ß  0 

In this case, the roots of the equation ( 6 ) are given by 

 

 λ  =  (2- α - ß) ±   (2- α - ß)2 – 4(1- α - ß )              (7)            

                                                                               

                                      2 

 

The expression within the radical sign reduces to 2. 

With the positive sign in equation (7), one obtains λ = 1. 

Taking the negative sign in equation (7), λ is obtained as 

. Thus, the characteristic roots of the matrix P 

are obtained as 

 

λ1  = 1 

λ2  =  

 

Since, α + ß  0, it follows that  λ1  λ2  

Thus in this case there are two distinct characteristic roots of 

P. 

 

THEOREM (Paria, 1992): 

When an 2 X 2 matrix ‘a’, has distinct characteristic roots λ1 

and λ2, there exists an invertible 2 X 2 matrix ‘b’ such that   

 

                    λ1      0       

  a   = b                          b-1                    (8) 

0 λ2      
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EXPRESSION FOR P
n 

: 

Consider a matrix P with the property α + ß  0. By the above 

theorem, there exists a matrix Q such that 

 

                             λ1         0      

                  P = Q                            Q-1        (9) 

                                  0         λ2     

 

 

One obtains 

 

                       1               

                   Q =                                    (10)                       

                              1      -         

 

 

Its inverse is obtained as 

 

                                

  Q-1  =    1          -1            (11) 

 

From this, it follows that 

 

                       1                     0         

P = Q                                                 Q-1           (12)         

                     0      

 

 

The quantities  and being probabilities satisfy the 

inequalities  

0   1 and 0   1 

 

So one obtains 

0   2 

 

Consequently one has 

| λ2|  = |1 - | = |1 – ( )| < 1 

 

Thus if follows that 

| λ2|  < 1                (13) 

 

Hence one obtains 

 

                    1            1                     0                      

Pn =            (14) 

                   1        -           0      (1 - n    1      -1   

 

 

                                                                            

    =    +  (1 - )n 

 

                                                       -             

 

                                                        (15)  

 

With any initial probability vector P(o) one can use equation 

(5) and (12) to find P(n). The first term in equation (15) 

namely, 

 

                      
 

               
 

 

As a constant and the second term in equation (15) is 

 

     )n    )n   

   )n           )n 

 

 

 

Because of the inequality (13), as n  , it is observed that  

 

(1 - )n        0 

 

Therefore the second term in equation (15) tends to zero. 

Consequently, if follows that 

 

                         
Pn                     

                                                                            as n→  

  

                   
 

                                                                              (16) 

 

Denote  by 0 and  by 1 . Then it is seen that 

 

                               0        1 

Pn        

                                                                                     (17)      

 n →       

                                    0         1 
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In view of this fact, one has 

 

  limit     Pn      =   0        1      P0  

     n→                                                                          (18)    

                             0          1     

 

As a consequence of proceeding discussion, one is led to the 

following result.  Let { xt } be a given time series data, 

following Bernoulli trails.  

 

Let P be the 2 X 2 matrix of transition probability associated 

with the series { xt }.  

Suppose 

 

       1 -         

                    P   = 

                1 -  

 

with  +  and | 1 – (  + | < 1 

 

Then, 

 

 Limit   Pn =  0         1     P(0)  

 n →  

   0          1  

where, 

 

 0  =   and 1 =  

 

MARKOV CHAIN MODEL FOR Sq MONTHLY 

VARIATION DATA: 

To study the behaviour of Sq monthly variation data, a two 

state Markov chain model is to be employed. It is assumed 

that the probability of the reading, in a particular day 

increasing or decreasing from the previous day depends on the 

condition of previous days. The model has two conditional 

probabilities as its parameters described below. 

             = prob (of being in state 1 today/previous day being 

in state 0)   

              = prob (of being in state 0 today/previous day being 

in state 1) 

 

No other factor is taken into account to explain the occurrence 

or non– occurrence of the change in the Sq monthly variation 

data as described above.[9]. 

 

TRENDS IN A TIME SERIES:  

There are two types of trends in a time series: positive trend 

and negative trend.  Positive trend means that the time series is 

increasing, whereas negative trend implies that the time series 

is decreasing. In a time series the number of periods in which 

it is increasing or decreasing compared to the previous day is 

taken into account. 

 

The transition matrix for the occurrence of an increasing or a 

decreasing trend in a time series data is given by: 

 

         0                   1         

               0    1 -                             

 

                         A      = 

                            1                    1 -       

 

 

The n - step transition probabilities are given by the elements 

of the matrix An where 

 

                                                                                        

  An  =                  + (1 - )n          -     

                                                +     -                  

 

 

Substitute  

 

 0  =  and 1  =  

 

Then one has 

 

           lim An   =      0           1 

         n →                0           1   

 

 

APPLICATION OF STOCHASTIC MODELING 

TO MONTHLY VARIATIONS OF THE 

COMPONENTS D, H AND Z FOR THE YEARS 

1995, 1996 AND 1997: 

The question of transition probalility matrices for the 

components D, H and Z at the four places ALB, HYD, PON 

and VIZ is now taken up.  

 

ASSUMPTION IN MODEL BUILDING: 

While constructing a model, certain reasonable assumptions 

have to be made.  Some important aspects of the real life 

situation have to be identified and incorporated in the model.  

As regards to the data, during certain months, there is neither 

an increase nor a decrease, compared with the previous month.  

The number of such months for the 3 components is noted 

below. 
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FOR COMPONENT D: 

 Monthly 

Variations  

ALB HYD PON VIZ 

No:of 

Months 

3 1 4 2 

 

FOR COMPONENT H: 

 Monthly 

Variations  

ALB HYD PON VIZ 

No:of 

Months 

3 0 1 2 

 

FOR COMPONENT Z: 

 Monthly 

Variations  

ALB HYD PON VIZ 

No:of 

Months 

0 2 2 4 

 

Since this number is very less for each monthly variation data, 

it is reasonable to restrict the attention to only those months 

for which either positive signs or negative signs are noticed. 

Thus a two state Markov model is assumed for the the 

monthly Sq variations data. 

 

VERIFICATION OF BERNOULLI TRIALS: 

 It has been verified that the Markov chains arising from ALB, 

HYD, PON and VIZ series for the three components D, H and 

Z follow Bernoulli trials. Because of the fulfillment of this 

condition, one may go ahead with the construction of the 

transition probalility matrix for each component in each place.  

These matrices are determined in the sequel. 

 

CALCULATION OF TRANSITION 

PROBABILITY MATRIX FOR COMPONENT D : 

The number of positive and negative signs are counted for the 

four places ALB, HYD, PON and VIZ for the component D. 

In the case of Alibag(ALB), 

 

            Today  t Total 

  - +  

  5 7 12 

  6 10 16 

 11 17 28 

 

From this table, the transition probability matrix for ALB 

series is obtained as 

 

                 5/12        7/12  

  P  =  

                 6/16      10/16 

In this case,  = 7/12, ß = 6/16 and hence  + ß  0. So there 

are two distinct characteristic roots for the matrix P. It is 

noticed that 

 

                      | λ2|  = |1 – ( )| 

 

                              = 0.042 <  1 

 

Hence the condition | λ2|<  1 is fulfilled. 

 

Preceding the same way, the transition probability matrix for 

HYD, PON and VIZ series is obtained as follows. 

 

The transition probability matrix for HYD series: 

 

               5/14        9/14 

P = 

    10/17          7/17  

 

 

The transition probability matrix for PON series: 

 

              4/10  6/10  

P = 

 6/16 10/16   

 

 

The transition probability matrix for VIZ series: 

 

 6/15 9/15 

  P = 

 8/15 7/15 

 

 

In all the cases, it is observed that  + ß  0 and the condition | 

λ2|<1 is fulfilled. 

 

CALCULATION OF TRANSITION 

PROBABILITY MATRIX FOR COMPONENT H: 

The number of positive and negative signs is counted for the 

four places ALB, HYD, PON and VIZ for the component H 

and the results are presented as follows. 

 

The transition probability matrix for ALB series is  

 

             8/15 7/15 

 P = 

 7/14 7/14   

 

The transition probability matrix for HYD series is 

 

 8/16 8/16 

  P =       

 10/16 6/16 

Previous day t-1 

t- 

 

 

 

Total 
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The transition probability matrix for PON series is 

 

 10/18 8/18 

 P =   

 8/14 6/14   

 

The transition probability matrix for VIZ series is  

 

             9/17 8/17 

P =   

 7/13 6/13   

 

In all the cases, it is observed that  + ß  0  and the condition 

| λ2|<1 is fulfilled. 

 

CALCULATION OF TRANSITION 

PROBABILITY MATRIX FOR COMPONENT Z: 

The numbers of positive and negative signs are counted at the 

four places ALB, HYD, PON and VIZ for the component Z 

and the results are presented as follows. 

 

The transition probability matrix for ALB series is 

 

 10/20 10/20 

   P =  

  9/14  5/14 

 

The transition probability matrix for HYD series is 

 

                    5/13 8/13 

             P =   

  8/16 8/16 

 

The transition probability matrix for PON series is 

 

   10/16  6/16 

             P = 

   8/14 6/14 

 

 

The transition probability matrix for VIZ series is 

 

  6/13  7/13 

             P = 

  8/14 6/14 

 

 

In all the cases, it is observed that  + ß  0  and the condition 

| λ2|<1 is fulfilled. 

DETERMINATION OF TRENDS: 

Let Pij denote the probability of transition from state i to state 

j after ‘n’ months. For any positive integer n, the matrix Pn  =  

(Pij)n of  the  n – step  transition probability can be obtained. 

The limiting matrix Pn as n→ indicates that the probability 

of finding an increasing trend is  and of noticing a 

decreasing trend is . The values of   and ß for each place 

are calculated for the 3 components D,H and Z. Using them, 

the probabilities for increasing and decreasing trends are 

determined. These results are provided in the following table. 

 

LIMITING PROBABILITIES FOR THE 4 PLACES 

ALB, HYD, PON AND VIZ: 

CASE (i): FOR COMPONENT D:TABLE 3:  

 

     
PLACE 

 

    

 

   ß 

PROB.  

INCRE-

ASING 

TREND 

FOR 

DECRE-

ASING 

TREND 

        

ALB 

0.583 0.375 0.6 0.4 

        

HYD 

0.643 0.588 0.5 0.5 

        

PON 

0.6 0.375 0.6 0.4 

        

VIZ 

0.6 0.533 0.5 0.5 

 

CASE (ii): FOR COMPONENT H:TABLE 4: 

 

 

        

PLACE 

 

 

 

ß 

PROB. 

INCRE-

ASING 

TREND 

FOR 

DECRE-

ASING 

TREND 

        

ALB 

0.467 0.5 0.5 0.5 

        

HYD 

0.5 0.625 0.4 0.6 

        

PON 

0.444 0.571 0.4 0.6 

        IZ 0.471 0.538 0.5 0.5 

 

 

CASE(iii): FOR COMPONENT Z:TABLE 5: 

 

 

      

PLACE 

 

 

 

ß 

PROB. 

INCRE-

ASING 

TREND 

FOR 

DECRE-

ASING 

TREND 

       

ALB 

0.5 0.643 0.4 0.6 

       

HYD 

0.615 0.5 0.6 0.4 

       

PON 

0.375 0.571 0.4 0.6 

VIZ 0.538 0.571 0.5 0.5 
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RESULT AND ANALYSIS 

From case (i) it is seen that the monthly variations for 

component D, at the places HYD and VIZ possess equal 

chance to have increasing trend or decreasing trend in the 

short run. In the case of ALB and PON, these probabilities 

differ. For ALB the difference in probabilities is 0.2, which is 

the same as the case of PON. From case (ii), it is observed that 

the monthly variations for component H, at the places ALB 

and VIZ possess equal chance to have increasing trend or 

decreasing trend in the short run. In the case of HYD and PON 

these probabilities differ. The difference in probabilities in the 

2 places is 0.2. From case (iii), it is noticed that the monthly 

variation for component Z at VIZ possess equal chance to 

have increasing trend or decreasing trend in the short run, 

whereas in the case of ALB, HYD and PON, the difference in 

probabilities comes to 0.2. 

 

CONCLUSION 

The daily variation in the magnetic field at the Earth’s surface 

during geomagnetic quiet periods (Sq) is known to be 

associated with the dynamo currents driven by winds and tidal 

motions in the E-region of the ionosphere known as 

atmospheric dynamo. Besides the atmospheric dynamo, other 

sources of electric field and currents at equatorial region 

contribute to Sq variations on different components of 

geomagnetic field observed at the ground level. Daily range of 

the geomagnetic field is an important parameter measuring the 

magnitude of diurnal variation. Being dependent on the daily 

maximum and minimum field values, the parameter fluctuates 

from day to day in accordance with the variability of both 

these values. A continuous recording of any of the 

components of the geomagnetic field typically exhibits two 

types of variations: a smooth, regular variation, known as Sq, 

the solar quiet day variation and a rapid irregular fluctuation. 

The Sq variations are the most regular of all the geomagnetic 

field variations. Here geomagnetic quiet day (Sq) variations 

have been analyzed through the application of Graph 

Theoretic Modeling. 

 

The application of Stochastic Modeling for pattern recognition 

and classification have been used for numerous applications in 

astronomy, meteorology, cartography, satellite data analysis, 

artificial intelligence etc., Here it is used to study the identical 

pattern of geomagnetic variations at Indian observatories. 

Generally, for a huge volume of data in a complicated analysis 

this technique yields accurate results. As a result of this study, 

it is expected that future usage of this technique may be 

appropriate for exploring some new results in geomagnetism. 

 

It is concluded that there seems to be good ground for 

expecting a two state Markov chain model to describe the 

increasing or decreasing trend in the series of monthly Sq 

variations at the four observatories, in a short run.  
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