
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 05 | May-2013, Available @ http://www.ijret.org 741

SOFTWARE TESTING DEFECT PREDICTION MODEL-A PRACTICAL

APPROACH

Shaik Nafeez Umar

Lead-Industry Consultant, CSC Company, Hyderabad, Andhra Pradesh, India

nshaik5@csc.com, nafishaik123@gmail.com

Abstract
Software defects prediction aims to reduce software testing efforts by guiding the testers through the defect classification of software

systems. Defect predictors are widely used in many organizations to predict software defects in order to save time, improve quality,

testing and for better planning of the resources to meet the timelines. The application of statistical software testing defect prediction

model in a real life setting is extremely difficult because it requires more number of data variables and metrics and also historical

defect data to predict the next releases or new similar type of projects. This paper explains our statistical model, how it will accurately

predict the defects for upcoming software releases or projects. We have used 20 past release data points of software project, 5

parameters and build a model by applying descriptive statistics, correlation and multiple linear regression models with 95%

confidence intervals (CI). In this appropriate multiple linear regression model the R-square value was 0.91 and its Standard Error is

5.90%. The Software testing defect prediction model is now being used to predict defects at various testing projects and operational

releases. We have found 90.76% precision between actual and predicted defects.

Index Terms: Software defects, SDLC, STLC, Multiple Linear Regression

--***--

1. INTRODUCTION

In the past thirty years, many software defect prediction

models have been developed. In the software

testing/development organization, a need for release/project

wise better defect prediction models. Predicting the defects in

testing projects is a big challenge. Software development

organizations have been working on making good plans to

achieve better development, maintenance and management

processes by predicting the defects. Companies spend huge

amount of money in allocating resources to testing the

software systems in order to find the defects. If we can have a

model to predict the defects in the release/project, the schedule

variance can be minimized and can be received excellent

customer satisfaction. Evaluation of many software models

were presented in [1, 2, 3 and 27]. Statistical based models of

software defects are little help to a Project Manager who must

decide between these alternatives [4].

Software defects are more costly if discovered and fixed in the

later stages of the testing and development life cycles or

during the production [5]. Consequently, testing is one of the

most critical and time consuming phase of the software

development life cycle and accounts for 50% of the total cost

of development [5]. Defect predictors improve the efficiency

of the testing phase in addition to helping developers evaluate

the quality and defect proneness of their software product [6].

They can also help managers in allocating resources,

rescheduling, training plans and budget allocations. Most

defect prediction models combine well known methodologies

and algorithms such as statistical techniques [7, 8 and 9] and

machine learning [10, 11, 12 and 13] they require historical

data in terms of software metrics and actual defect rates, and

combine these metrics and defect information as training data

to learn which modules seem to be defect prone.

Recent research on defect prediction shows that AI based

defect predictors can detect 70% of all defects in a software

system on average [14], while manual code reviews can detect

between 35 to 60% of defects [15] and inspections can detect

30% of defects at the most [16]. A number of authors, for

example [17, 18 and 19] have newly used Bayesian Networks

models in software engineering management. Bayesian

Networks models can useful to predict number of software

defects remaining undetected after testing [20], this can be

used project managers in particularly help to decide when to

stop testing and release software, trading-off the time for

additional testing against the likely benefit.

2. OBJECTIVE AND METHODOLOGY

 Defect prediction improves efficiency of the testing phase

in addition to helping developers evaluate the quality and

defect proneness of their software product.

 Help managers in allocating resources, rescheduling,

training plans and budget allocations.

 Depending on the forecasted trends:

o Resources can be efficiently ramped up or down

o Gaps in Skills and trainings can be plugged

 Predicts defect leakage into production.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 05 | May-2013, Available @ http://www.ijret.org 742

3. OBJECTIVE AND METHODOLOGY

The objective of this paper is to predict software testing

defects using statistical models and evaluate the accuracy of

the statistical defect prediction model. To determine potential

of the statistical models to capture the number of defects on

the basis of past data and their metrics, we proceed as follows.

To identify the best predictors in the available set of 18

parameters, we calculate product moment correlation between

the number of defects and the predictors. Then we proceed

with more advanced statistical models to deal with normal

distribution of the target variable and the specifics of the

historical data and check multicollinerity within predictor

parameters.

The key variables we analyzed were the descriptive

parameters of target variable. As a result for the analysis, we

used a dataset of 20 software releases which is correlated with

among the influence variables. The parameters of the

generalized Multiple Linear Regression are first estimated

using the method of ordinal least squares (OLS). The

application of the OLS method for fitting the parameters of the

generalized linear regression model is justified if error

distribution is assumed to be normal. In this case OLS and the

maximum likelihood (ML) estimates of β are very close the

same for the linear model [21 and 27]. We use Multiple Linear

Regression (MLR) for the estimation of the defect using the

five predictors with correlation coefficients. In the predictive

modeling, the multiple regression models are used for

predicting defects in software field.

Y=β0+ β1X1+ β2 X2+ β3 X3+ β4 X4+………………..+ βn

Xn,

Where Y=Dependent parameter (Defects),

β1, β2, β3, β4,……. βn Coefficient values and X1, X1, X1,

X1,…. X1 are independent parameters (Total number of test

cases executed, Test team size, Allocated development effort,

Test case execution effort and Total number of components

delivered)

4. RESULTS AND DISCUSSION

Out of total 20 software data items, we have identified total

number of Test Cases executed, Test Team size, Allocated

Unit testing effort, Test case execution Effort and Total

numbers of components delivered are independent variables

and number of defects as dependent variable. We have

identified dependent variables based on the past data and

experience. We have been observing the same pattern in many

of our projects. Total number of defects depends on total

number of test cases and is directly proportional. If number of

test cases are high and critical to requirements the chances are

getting defects is high. This is one of the strongly influencing

parameter. There is strong correlation between these two

parameters. Number of defects in the software release/project

is directly proportional to Test team size. If test team size is

more, then probability of getting defects is high. Number of

defects in the software release/project is indirectly

proportional to allocated unit testing effort. If the allocated

unit testing effort is more, then developers will be able to find

more number of defects in the unit testing phase only and

leakage of the defects to the next phase will be minimized.

This is one of the strong parameter negatively influencing on

the number of defects. If the allocated unit testing effort is less

then probability of getting defects are very high in the testing

phase. Number of defects in the software release/project is

directly proportional to test case execution effort. If the test

case execution effort is more, then probability of getting

defects is high. Number of defects in the software

release/project is directly proportional to total number of

components delivered. If the total number of components

delivered is more, then probabilities of getting defects are

high.

In literature, various authors have also used other type of

metrics like KLOC for prediction model, while this for simple

liner regression [14]. It was strongly associated between

defects. Of the 20 releases, the mean defects were 28 and its

standard deviation is 16 while the mean total number of test

cases executed 264. The proportion of test cases executed and

defects rate are 9:1. The average allocated unit testing effort

was 433 and SD is 226, correlation coefficient a value is

0.2441, it is not significant at 0.05 levels. It means it was no

associated with number of defects. Product moment

correlation coefficient is most widely used for calculating

correlations and its significance level, except it assumes

normality in the distribution of analyzed variables. As our

statistical predictive model variables were clearly normally

distributed. There is highly significant difference between

defect and test team size, it was 0.7665(p<0.01) and next

followed by total number of components delivered i.e. 0.6485

(p<0.01) [table 1].

The coefficient values of multiple linear regressions presents β

values were positive and negative and low its standard errors

i.e. Total number of test cases executed, test team size,

allocated unit testing effort, test case execution effort and total

number of components. We observed test team size only

significantly at 0.05 levels [table 2].

It seems to graphical representation of actual and estimated

defects, R1 and R2 releases were vary from actual and

estimated defects. While next to continued R3 to R15 were

same pattern, it was no variation among the trend lines. In the

statistical defect prediction model shows next five releases

data point to be predicted and it will be given number of

defects bases on release requirements [graph 1].

We used Analysis of variance (ANOVA) for good fit of model

also its r-square, the predictive model coefficient of

determination is 0.91, and it means 91% of the variation in

defects is associated with number of predictors. The F-ratio is

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 05 | May-2013, Available @ http://www.ijret.org 743

26.37 (p<0.01) which is highly significant at 0.01 levels.

Finally the standard error (SE) was 5.90% it is very low error

in this prediction model. In this model we compare the actual

defects and estimated defects, both of the same patterns and its

precision was 90.76%. We used error analysis for validation of

the model. We assumed that the errors followed by normality

and mean and variance are constant.

CONCLUSION

We analyzed an extensive historical dataset of software

releases to identify factors influencing parameters of defect

prediction model. We found strong correlation between

defects and test team size, total number of test cases executed,

total number of components delivered. In this analysis we use

multiple regression analysis for estimating software defects.

These models is account for the typical problems for

identifying and influence parameters as well as metrics data,

such as inconsistent and heterogeneity of data. Overall these

models indicate good prediction for upcoming software

defects as well as quality improvement. By using the

predictive model identified project manager’s key parameters

that require controlling and improve both the development and

testing process. The R-square value was 0.91 (91%) which is

highly significant at 0.01 level and low standard error (SE)

was 5.90%.

We calibrated our model based on its prediction accuracy and

discovered that it is possible to detect on 84% of number of

defectives using a defect predictors.

We will continue this work by:

 Extending the analysis by analyzing the impact of

different combinations of factors on proportion of defect

types.

 Extending the model to predict the Defect Severity Index

(DSI).

 Extending the model to predict the defect leakage into the

production or next phases.

 Extending the model to take a decision like GO or No-GO

into the production.

 Extending the model with the results of newer analysis

using advanced statistical models.

 Validating the model against historical data and

assumptions in software engineering.

Table 1 Illustrates the descriptive statistics like mean and

standard deviation values of final model parameters.

Table 2 significant values of Multiple Linear Regression

(MLR)

Parameter Mean

Standard

Deviation

(SD)

Correlation
p-

value

Total

number of

Test Cases

executed (#)

264 169 0.5425 p<0.05

Test Team

size (#)
10 4 0.7665 p<0.01

Allocated

Unit testing

effort (Hrs)

433 226 0.2441 p>0.05

Test case

execution

Effort (Hrs)

252 188 0.0593 p>0.01

Total

number of

components

delivered (#)

11 11 0.6485 p<0.01

Number of

defects (#)
28 16 - -

Multiple Linear

Regression (MLR)

Coefficients

values

Standard

Error

(SE)

Significant

P-value

Intercept -5.36813 5.641756 p>0.05

Total number of Test

Cases executed (#) 0.019694 0.013713 p>0.05

Test Team size (#) 6.238706 0.91904 p<0.01

Allocated Unit

testing effort (%) -0.02611 0.007791 p<0.01

Test case execution

Effort (%) -0.07895 0.013876 p<0.01

Total number of

components delivered

(#) -0.15725 0.324758 p>0.05

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 05 | May-2013, Available @ http://www.ijret.org 744

Graph 1 Trend pattern of Actual and estimated software

defects

ACKNOWLEDGEMENT

I want to thank Narendra singh Rajput, Lead Associate

Manager, for his valuable feedback and guidance and Prof

Balasiddamuni, Department of Statistics, S V University,

Tirupati and Raghav Beeram, Global Head - Test

Management Consulting, Independent Testing Services, CSC,

Hyderabad for guiding me and supporting me in my research

paper.

I would like to express my love affection to my mother Smt.

Shaik Zaibunnisa, My Father Sri. Late S. Mahaboob Basha,

Brothers and Sisters, My spouse Ballary Ameen, Children’s

Shaik Mohammed Wafeeq, Shaik Waneeya, my Niece

Samreen Aaleia for enthusing me throughout the work

REFERENCES

[1] M. Boraso, C. Montangero, and H. Sedehi, “Software cost

estimation: An experimental study of model performances,”

tech. report, 1996.

[2] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes,

“Validation methods for calibrating software effort models,”

in ICSE ’05: Proceedings of the 27th international conference

on Software engineering, (New York, NY, USA), pp. 587–

595, ACM Press, 2005.

[3] O. Benediktsson, D. Dalcher, K. Reed, and M. Woodman,

“COCOMO based effort estimation for iterative and

incremental software development,” Software Quality Journal,

vol. 11, pp. 265–281, 2003.

[4] Fenton, N. E. and Neil, M. A Critique of Software Defect

Prediction Models, IEEE Transactions on Software

Engineering, 25(5), 675-689, 1999.

[5] Brooks, A. The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley. Eds. 1995.

[6] Neil, M., Krause, P., Fenton, N. E., Software Quality

Prediction Using Bayesian Networks in Software Engineering

with Computational Intelligence, (Ed Khoshgoftaar TM),

Kluwer, ISBN 1-4020-7427-1, Chapter 6, 2003.

[7] Nagappan.N., Ball, T., Murphy, B. Using Historical In

Process and Product Metrics for Early Estimation of Software

Failures, In Proceedings of the International Symposium on

Software Reliability Engineering. NC. 2006.

[8] Ostrand. T.J., Weyuker E.J., Bell, R.M Predicting the

Location and Number of Faults in Large Software Systems,

IEEE Transactions on Software Engineering (31), 4:340-355,

2005.

[9] Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.

Mining version histories to guide software changes. In

proceedings of the 26th International Conference on software

Engineering, 563-572, IEEE Computer Society, DC, USA,

2004.

[10] Munson, J.C., Khoshgoftaar, T.M. The detection of fault-

prone programs. IEEE Transactions on software Engineering

(18), 5: 423-433. 1992.

[11] G. Succi, M. Stefanovic, W. Pedrycz Advanced

Statistical Models for Software Data, Proceedings of the 5th

World Multi-Conference on Systems, Cybernetics and

Informatics, Orlando, Florida, 2003.

[12] Lessmann. S., Basens. B., Mues., C. Pietsch.

Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings. IEEE

Transactions on Software Engineering (34), 4: 1-12. 2008.

[13] Moser, R., Pedrycz, W., Succi. G. A comparative analysis

of the efficiency of change metrics and static code attributes

for defect prediction, In Proceedings of the 30th International

Conference on software Engineering, 181-190. 2008.

[14] Menzies, T., Greenwald, J., Frank, A. Data mining static

code attributes to learn defect predictors. IEEE Transactions

on Software Engineering (33), 1: 2-13. 2007.

[15]BogaziciUniversity, http://code.google.com/p/prest/.

Shull, F., Boehm, V.B., Brown, A., Costa, P., Lindvall, M.,

Port, D., Rus, I., Tesoriero, R., and Zelkowitz, M. 2002. What

We Have Learned About Fighting Defects. In Proceedings of

the Eighth International Software Metrics Symposium, 249-

258, 2002.

[16] Fagan, M. Design and Code Inspections to Reduce Errors

in Program Development. IBM Systems Journal (15), 3. 1976.

[17] Bibi, S. and Stamelos, I. Software Process Modeling with

Bayesian Belief Networks In Proceedings of 10th International

Software Metrics Symposium (Metrics2004) 14-16 September

2004, Chicago, USA.

[18] Fan, Chin-Feng, Yu, Yuan-Chang. BBN-based software

project risk management, J Systems Software, 73, 193-203,

2004.

[19] Stamlosa, I., Angelisa, L., Dimoua, P., Sakellaris, P. On

the use of Bayesian belief networks for the prediction of

software productivity Information and Software Tech, 45 (1),

51-60, 2003.

[20] Fenton, N.E., Krause, P., Neil, M., Software

Measurement: Uncertainty and Causal Modeling, IEEE

Software 10(4), 116-122, 2002.

http://code.google.com/p/prest/

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 05 | May-2013, Available @ http://www.ijret.org 745

[21] Fenton, N.E. and Neil, M.A Critique of Software Defect

Prediction Models, IEEE Transactions on Software

Engineering, 25(5), 675-689, 1999.

[22] Cameron A.C. and Trivedi P.K. Econometrics models

based on count data: comparisons and applications of some

estimators and tests, Journal of Applied Econometrics, 1, 29-

93, 1986.

[23] Lambert D. Zero-inflated Poisson regression with an

application to defects in manufacturing, Technimetrics, 34, 1-

14, 1990.

[24] Long J.S. Regression Models for Categorical and Limited

Dependent Variables, Advanced Quantitative Techniques in

the social Sciences, No 7, Sage Publications.1997.

[25] Graves T., Karr A.F., Marron J.S., Siy H. Predicting Fault

Incidence Using Software Change History, IEEE Transactions

on Software Engineering, Vol.26, No.& July. 2000.

[26] Stamelosa, I., Angelisa, L., Dimoua, P., Sakellaris, P. On

the use of Bayesian belief networks for the prediction of

software productivity Information and Software Tech, 45 (1),

51-60, 2003.

[27] Nafeez Umar Shaik, Bathineedi Koteswara Rao and

Beeram Raghav, Software defect prediction model: A

statistical approach, Software Testing Conference (STC-

2010), 10th Annual International Software Testing Conference

in India 2010, November, 22-23, Bangalore.

BIOGRAPHIES

Working as Lead Industry Consultant in

Test Management Consulting group,

AppLabs – a Computer Science

Corporation Company, Hyderabad, India.

He has 9 years in IT experience as

Statistician and Statistical modeller. He has

published 14 papers in

National/International journals. He is expert in Statistical and

Econometric modelling

