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Abstract 
Software defects prediction aims to reduce software testing efforts by guiding the testers through the defect classification of software 

systems. Defect predictors are widely used in many organizations to predict software defects in order to save time, improve quality, 

testing and for better planning of the resources to meet the timelines. The application of statistical software testing defect prediction 

model in a real life setting is extremely difficult because it requires more number of data variables and metrics and also historical 

defect data to predict the next releases or new similar type of projects. This paper explains our statistical model, how it will accurately 

predict the defects for upcoming software releases or projects. We have used 20 past release data points of software project, 5 

parameters and build a model by applying descriptive statistics, correlation and multiple linear regression models with 95% 

confidence intervals (CI). In this appropriate multiple linear regression model the R-square value was 0.91 and its Standard Error is 

5.90%. The Software testing defect prediction model is now being used to predict defects at various testing projects and operational 

releases. We have found 90.76% precision between actual and predicted defects. 

 

Index Terms: Software defects, SDLC, STLC, Multiple Linear Regression 

--------------------------------------------------------------------***-------------------------------------------------------------------------- 

1. INTRODUCTION  

In the past thirty years, many software defect prediction 

models have been developed. In the software 

testing/development organization, a need for release/project 

wise better defect prediction models. Predicting the defects in 

testing projects is a big challenge. Software development 

organizations have been working on making good plans to 

achieve better development, maintenance and management 

processes by predicting the defects. Companies spend huge 

amount of money in allocating resources to testing the 

software systems in order to find the defects. If we can have a 

model to predict the defects in the release/project, the schedule 

variance can be minimized and can be received excellent 

customer satisfaction. Evaluation of many software models 

were presented in [1, 2, 3 and 27]. Statistical based models of 

software defects are little help to a Project Manager who must 

decide between these alternatives [4]. 

 

Software defects are more costly if discovered and fixed in the 

later stages of the testing and development life cycles or 

during the production [5]. Consequently, testing is one of the 

most critical and time consuming phase of the software 

development life cycle and accounts for 50% of the total cost 

of development [5]. Defect predictors improve the efficiency 

of the testing phase in addition to helping developers evaluate 

the quality and defect proneness of their software product [6]. 

They can also help managers in allocating resources, 

rescheduling, training plans and budget allocations. Most 

defect prediction models combine well known methodologies 

and algorithms such as statistical techniques [7, 8 and 9] and 

machine learning [10, 11, 12 and 13] they require historical 

data in terms of software metrics and actual defect rates, and 

combine these metrics and defect information as training data 

to learn which modules seem to be defect prone. 

 

Recent research on defect prediction shows that AI based 

defect predictors can detect 70% of all defects in a software 

system on average [14], while manual code reviews can detect 

between 35 to 60% of defects [15] and inspections can detect 

30% of defects at the most [16]. A number of authors, for 

example [17, 18 and 19] have newly used Bayesian Networks 

models in software engineering management. Bayesian 

Networks models can useful to predict number of software 

defects remaining undetected after testing [20], this can be 

used project managers in particularly help to decide when to 

stop testing and release software, trading-off the time for 

additional testing against the likely benefit. 

 

2. OBJECTIVE AND METHODOLOGY 

 Defect prediction improves efficiency of the testing phase 

in addition to helping developers evaluate the quality and 

defect proneness of their software product. 

 Help managers in allocating resources, rescheduling, 

training plans and budget allocations. 

 Depending on the forecasted trends: 

o Resources can be efficiently ramped up or down 

o Gaps in Skills and trainings can be plugged  

 Predicts defect leakage into production. 
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3. OBJECTIVE AND METHODOLOGY 

The objective of this paper is to predict software testing 

defects using statistical models and evaluate the accuracy of 

the statistical defect prediction model. To determine potential 

of the statistical models to capture the number of defects on 

the basis of past data and their metrics, we proceed as follows. 

To identify the best predictors in the available set of 18 

parameters, we calculate product moment correlation between 

the number of defects and the predictors. Then we proceed 

with more advanced statistical models to deal with normal 

distribution of the target variable and the specifics of the 

historical data and check multicollinerity within predictor 

parameters.  

 

The key variables we analyzed were the descriptive 

parameters of target variable. As a result for the analysis, we 

used a dataset of 20 software releases which is correlated with 

among the influence variables. The parameters of the 

generalized Multiple Linear Regression are first estimated 

using the method of ordinal least squares (OLS). The 

application of the OLS method for fitting the parameters of the 

generalized linear regression model is justified if error 

distribution is assumed to be normal. In this case OLS and the 

maximum likelihood (ML) estimates of β are very close the 

same for the linear model [21 and 27]. We use Multiple Linear 

Regression (MLR) for the estimation of the defect using the 

five predictors with correlation coefficients. In the predictive 

modeling, the multiple regression models are used for 

predicting defects in software field. 

 

Y=β0+ β1X1+ β2 X2+ β3 X3+ β4 X4+………………..+ βn 

Xn,  

 

Where Y=Dependent parameter (Defects), 

β1, β2, β3, β4,……. βn Coefficient values and X1, X1, X1, 

X1,…. X1 are independent parameters (Total number of test 

cases executed, Test team size, Allocated development effort, 

Test case execution effort and Total number of components 

delivered) 

 

4. RESULTS AND DISCUSSION 

Out of total 20 software data items, we have identified total 

number of Test Cases executed, Test Team size, Allocated 

Unit testing effort, Test case execution Effort and Total 

numbers of components delivered are independent variables 

and number of defects as dependent variable. We have 

identified dependent variables based on the past data and 

experience. We have been observing the same pattern in many 

of our projects. Total number of defects depends on total 

number of test cases and is directly proportional. If number of 

test cases are high and critical to requirements the chances are 

getting defects is high. This is one of the strongly influencing 

parameter. There is strong correlation between these two 

parameters.  Number of defects in the software release/project 

is directly proportional to Test team size. If test team size is 

more, then probability of getting defects is high. Number of 

defects in the software release/project is indirectly 

proportional to allocated unit testing effort. If the allocated 

unit testing effort is more, then developers will be able to find 

more number of defects in the unit testing phase only and 

leakage of the defects to the next phase will be minimized.  

This is one of the strong parameter negatively influencing on 

the number of defects. If the allocated unit testing effort is less 

then probability of getting defects are very high in the testing 

phase. Number of defects in the software release/project is 

directly proportional to test case execution effort. If the test 

case execution effort is more, then probability of getting 

defects is high. Number of defects in the software 

release/project is directly proportional to total number of 

components delivered. If the total number of components 

delivered is more, then probabilities of getting defects are 

high. 

 

In literature, various authors have also used other type of 

metrics like KLOC for prediction model, while this for simple 

liner regression [14]. It was strongly associated between 

defects. Of the 20 releases, the mean defects were 28 and its 

standard deviation is 16 while the mean total number of test 

cases executed 264. The proportion of test cases executed and 

defects rate are 9:1. The average allocated unit testing effort 

was 433 and SD is 226, correlation coefficient a value is 

0.2441, it is not significant at 0.05 levels. It means it was no 

associated with number of defects. Product moment 

correlation coefficient is most widely used for calculating 

correlations and its significance level, except it assumes 

normality in the distribution of analyzed variables. As our 

statistical predictive model variables were clearly normally 

distributed. There is highly significant difference between 

defect and test team size, it was 0.7665(p<0.01) and next 

followed by total number of components delivered i.e. 0.6485 

(p<0.01) [table 1].  

 

The coefficient values of multiple linear regressions presents β 

values were positive and negative and low its standard errors 

i.e. Total number of test cases executed, test team size, 

allocated unit testing effort, test case execution effort and total 

number of components. We observed test team size only 

significantly at 0.05 levels [table 2].  

 

It seems to graphical representation of actual and estimated 

defects, R1 and R2 releases were vary from actual and 

estimated defects. While next to continued R3 to R15 were 

same pattern, it was no variation among the trend lines. In the 

statistical defect prediction model shows next five releases 

data point to be predicted and it will be given number of 

defects bases on release requirements [graph 1]. 

 

We used Analysis of variance (ANOVA) for good fit of model 

also its r-square, the predictive model coefficient of 

determination is 0.91, and it means 91% of the variation in 

defects is associated with number of predictors. The F-ratio is 
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26.37 (p<0.01) which is highly significant at 0.01 levels. 

Finally the standard error (SE) was 5.90% it is very low error 

in this prediction model. In this model we compare the actual 

defects and estimated defects, both of the same patterns and its 

precision was 90.76%. We used error analysis for validation of 

the model. We assumed that the errors followed by normality 

and mean and variance are constant. 

 

CONCLUSION 

We analyzed an extensive historical dataset of software 

releases to identify factors influencing parameters of defect 

prediction model. We found strong correlation between 

defects and test team size, total number of test cases executed, 

total number of components delivered. In this analysis we use 

multiple regression analysis for estimating software defects. 

These models is account for the typical problems for 

identifying and influence parameters as well as metrics data, 

such as inconsistent and heterogeneity of data. Overall these 

models indicate good prediction for upcoming software 

defects as well as quality improvement. By using the 

predictive model identified project manager’s key parameters 

that require controlling and improve both the development and 

testing process. The R-square value was 0.91 (91%) which is 

highly significant at 0.01 level and low standard error (SE) 

was 5.90%. 

 

We calibrated our model based on its prediction accuracy and 

discovered that it is possible to detect on 84% of number of 

defectives using a defect predictors. 

 

We will continue this work by: 

 Extending the analysis by analyzing the impact of 

different combinations of factors on proportion of defect 

types. 

 Extending the model to predict the Defect Severity Index 

(DSI).  

 Extending the model to predict the defect leakage into the 

production or next phases. 

 Extending the model to take a decision like GO or No-GO 

into the production. 

 Extending the model with the results of newer analysis 

using advanced statistical models. 

 Validating the model against historical data and 

assumptions in software engineering. 

 

 

 

 

 

 

 

 

 

 

Table 1 Illustrates the descriptive statistics like mean and 

standard deviation values of final model parameters. 

 

 

 

Table 2 significant values of Multiple Linear Regression 

(MLR) 

Parameter Mean 

Standard 

Deviation 

(SD) 

Correlation 
p-

value 

Total 

number of 

Test Cases 

executed (#) 

264 169 0.5425 p<0.05 

Test Team 

size (#) 
10 4 0.7665 p<0.01 

Allocated 

Unit testing 

effort (Hrs) 

433 226 0.2441 p>0.05 

Test case 

execution 

Effort (Hrs) 

252 188 0.0593 p>0.01 

Total 

number  of 

components 

delivered (#) 

11 11 0.6485 p<0.01 

Number of  

defects (#) 
28 16 - - 

  

 

Multiple Linear 

Regression (MLR) 

Coefficients 

values 

Standard 

Error 

(SE) 

Significant 

P-value 

Intercept -5.36813 5.641756 p>0.05 

Total number of Test 

Cases executed (#) 0.019694 0.013713 p>0.05 

Test Team size (#) 6.238706 0.91904 p<0.01 

Allocated Unit 

testing effort (%) -0.02611 0.007791 p<0.01 

Test case execution 

Effort (%) -0.07895 0.013876 p<0.01 

Total number  of 

components delivered 

(#) -0.15725 0.324758 p>0.05 
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Graph 1 Trend pattern of Actual and estimated software 

defects 
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