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Abstract 

This paper investigates the use of Discrete Linear Quadratic Gaussian (DLQG) Compensator to damp sub synchronous oscillations in 

a Thyrisor Controlled Series Capacitor (TCSC) compensated power system. The study is conducted on IEEE First Benchmark Model 

(FBM) in which, TCSC is modelled as a discrete linear time-invariant modular unit in the synchronously rotating DQ reference 

frame. This modular TCSC is then integrated with the Linear Time Invariant (LTI) model of the rest of the system. The design of 

DLQG includes the design of a Kalman filter for full state estimation and a full state feedback for control. Since the order of the 

controller is as large as the order of the system considered here(27 states), the practical implementation of the controller is difficult. 

Hence by using Hankels norm approximation technique, the order of the controller is reduced from 27 to 15 without losing the 

significant system dynamics. The eigen analysis of the system shows that the use of DLQG can damp torsional oscillations as well as 

the swing mode oscillations simultaneously, which is practically difficult for a conventional sub-synchronous damping controller. The 

performance of the system with DLQG is appreciable for all operating conditions and it shows the robustness of the controller. 

 

Index Terms: Sub-Synchronous Resonance (SSR), Torsional Oscillations, Thyristor Controlled Series Capacitor (TCSC), Discrete 

Linear Quadratic Gaussian(DLQG)Compensator, Model Order Reduction (MOR). 

-----------------------------------------------------------------------***----------------------------------------------------------------------- 

1. INTRODUCTION 

Series capacitors have been used extensively as an economical 

means to increase load carrying capability, control load sharing 

among parallel lines and enhance transient stability. However, 

capacitors in series with transmission lines may cause sub-

synchronous resonance that can lead to turbine- generator shaft 

failure and electrical instability at oscillation frequencies lower 

than the normal system frequency [1]- [3]. 

 

Sub-synchronous resonance (SSR) has gained its name from 

the fact that the frequencies of interest happened to lie in a 

region below the synchronous frequency of the network. The 

phenomenon of SSR was brought to general attention in 

connection with the two damages that occurred to the turbine -

generator shafts at the Mohave Generating station in southern 

Nevada in the United States of America in December of 1970 

and October of 1971. These two failures were analyzed and 

found that the failures occurred in the shaft section between the 

generator and the exciter of the main generator collector was 

due to torsional fatigue [4]- [6]. 

 

Torsional problems are most frequently encountered in rotor 

systems with long shafts and large inertias constituting a 

weakly damped mechanical system. The normal 

subsynchronous frequency range is between 10 to 50 Hz where 

as the swing mode oscillations are between 0.7 Hz to 2 Hz. 

Therefore the simultaneous dampings of these oscillations are 

difficult with a conventional controller. Numerous papers are 

published on different approaches in sub-synchronous analysis 

and also the use of Flexible AC Transmission System 

(FACTS) devices to damp electromechanical oscillations [7]. 

Many methods [8]- [10] are proposed using series and shunt 

FACTS devices to improve the power system dynamic 

stability. To do the stability analysis, a perfect modelling of the 

power system is required. Various efforts have been made in 

the past few years to obtain a linearised state space models of 

TCSC [11], [12]. A modular model of TCSC is derived by 

Othman and Angquist [13], in which the TCSC model is 

derived independently and then interfaced with the rest of the 

system. 

 

Kabiri et al. [14] developed a discrete model with higher 

sampling rate (six samples per cycle), which is a sample-

variant model. In this work, the IEEE First Benchmark model 

with the series compensation partly done by TCSC and partly 

by fixed capacitor is considered. A discrete linear time 

invariant state space model of TCSC is presented based on 

Poincare mapping technique [15]. The model is based on six 
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samples per cycle. The sample invariance of the model is 

achieved by a transformation of the zero sequence variables of 

different voltages and currents. The developed model is then 

integrated with the rest of the system.  

 

In pole placement technique, all states must be controllable and 

measurable, otherwise the controller input generated by the 

controller doesnot affect all the state variables of the system. In 

multi input, multi output (MIMO) systems, pole placement is 

extremely difficult. Yu et.al, pole assignment method is 

employed to control all the SSR modes, by using state 

feedback [16]. But it was found that the approach is difficult to 

implement since most of the state variables were not 

measurable. The major drawback of pole placement method is 

that, if the design parameters or controller gain elements are 

not having enough parameters, the best possible pole allocation 

is not possible. Moreover the control is based on measured 

state variables, some state variables measurement are so noisy 

which can result in unsuccessful pole placement. In output 

feedback control scheme, some signals required for the control 

were difficult to measure The system we considered in this 

study is a multi output system having 27 states. These states 

are not fully controllable and observable and hence the pole 

placement method is not possible. Discrete time designs are 

important because most controllers are implemented using 

digital controllers. With most of the conventional controllers 

simultaneous damping of swing mode and torsional mode 

frequencies are difficult. The system we considered in this 

study is a discrete model of IEEE FBM which has five 

torsional modes. Hence our keen interest was to design a 

discrete controller for our discrete system. The discrete LQG 

approach is based on the optimal estimation and optimal 

control of the discrete states. The DLQG technique nearly 

eliminates all the trial and error method of a conventional pole 

placement design. This discrete design can handle low 

sampling rate(6 samples per cycle) associated with the system.  

 

Hence our interest in this work is to design a controller to 

damp all these frequencies simultaneously. A Discrete Linear 

Quadratic Gaussian (DLQG) compensator is such an optimal 

controller with the objective of reducing a quadratic cost 

function of the system states and control signal. In the design 

of DLQG, the process noise and measurement noises are 

considered as white Gaussian noise signals with zero mean 

value. Since all the system states in this model are not 

observable, a Kalman filter is designed to estimate all the 

system states. By using these estimated states an optimal 

regulator is designed to control the TCSC [17] - [20]. 

 

Since the order of the DLQG controller is as large as the order 

of the system, practical implementation is difficult. Hence by 

using standard model order reduction techniques [21], [22], the 

order of the controller is reduced. Four different techniques are 

tried in this work to reduce the order of the controller namely, 

balanced realisation technique, optimal Hankel norm 

approximation technique, truncated balanced realisation and 

truncated residualisation technique [23]. By comparing the 

performance of these four methods, it has been observed that 

the Hankel norm approximation method of reduction gives 

better result. Hence in this study, the original system of 27 

states is reduced to 15 states by Hankel norm approximation 

method and it is found that the reduced model retains the 

important characteristics of the original system and 

approximates its response as closely as possible with the 

original system for the same inputs. The paper is organised as 

follows. Section II briefly explains the sub-synchronous 

phenomenon. Section III explains the mathematical modelling 

of the TCSC and section IV explains the interconnection of this 

modular discrete TCSC with the rest of the power system in 

IEEE FBM. Section V explains the DLQG design and the 

model order reduction of the controller. Section VI explains the 

simulation results followed by the conclusion in section VII. 

 

2. SUB-SYNCHRONOUS RESONANCE 

PHENOMENON  

Sub-Synchronous Resonance (SSR) is a dynamic phenomenon 

in power system. The IEEE definition for SSR is ” It is an 

electric power system condition where the electric network 

exchanges energy with a turbine generator at one or more of 

the natural frequencies of the combined system below the 

synchronous frequency” [3]. In a series compensated network 

shown in Fig.1, currents at resonance frequency fer will flow 

for a small electrical disturbance, where fer is given by : 

 

Where Xc is the effective series capacitive reactance and Xl is 

the effective inductive reactance of the system 

 
Fig.1. IEEE First Benchmark model for SSR studies 

 

These currents appearing at the generator armature will 

produce a rotating magnetic field at an angular electrical speed 

of !er . The armature magnetic field rotating at sub-

synchronous speed interacts with the rotor normal dc magnetic 
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field rotating at synchronous speed and develops an 

electromagnetic torque. The in phase component (in phase with 

speed ) of this torque is responsible for the sustained 

oscillations in the system. Torsional interaction occurs in the 

system, when the subsynchronous torque frequency f0 - fer is 

close to one of the torsional mode frequencies fn. If the 

damping torque component of the sub-synchronous torque 

equals or exceeds the inherent damping torque of the rotating 

system, the corresponding torsional modes will be unstable. If 

the generator torsional mode frequencies are different from the 

subsynchronous frequency, then the torsional interaction taking 

place in the system is very less. Since the rotor circuits are 

faster, the rotor resistance viewed from the armature terminal is 

negative. When this negative resistance exceeds the sum of the 

armature and network resistances, the electrical system is 

selfexcited [17], [18]. This effect is called Induction generator 

(IG) effect. This self-excitation can produce excessive voltages 

and currents. 

 

When the electrical resonant frequency is near to the 

complement of a torsional resonant frequency of the 

turbinegenerator shaft system, the torsional interaction takes 

place. Under this condition, a small voltage induced in the 

armature by rotor oscillation can result in a large sub-

synchronous current. When the torque produced by this current 

is larger than that resulting from the mechanical damping 

torque of the system, the coupled electromechanical system 

will experience growing oscillations, which is called the 

Torsional Interaction (TI). Problem of TI is more severe than 

that due to IG effect. 

 

3. LINEAR TIME INVARIANT DISCRETE 

MODEL OF TCSC 

In this section a sample invariant discrete model of TCSC [15] 

is presented. The main circuit of TCSC includes a capacitor, 

inductor and antiparallel switching thyristors. The operation of 

TCSC is periodic, where one of the thyristor conducts during a 

portion of the half cycle. The duration and timing of the 

conduction is based on triggering logic and is controlled by the 

current synchronised signals generated by PLL. Certain 

assumptions are made in the development of discrete model. 

The assumptions are: 

1) The thyristors are assumed to be ideal. 

2) TCSC is operated in capacitive mode only and the 

conduction angle of thyristors are limited to 60 electrical 

degrees which is the common operating range of TCSC. 

3) The six sampling instants in a cycle are fixed in time and are 

chosen such that the conduction period of intervals are as 

shown in Fig 2. 

4) The line current in DQO reference frame varies 

linearlyduring the sampling interval. i.e, 

 

 

 
Fig.2. Timing diagram of thyristor triggering of TCSC 

 

The thyristor turn on instant is ɸa and turn off instant is Ta in 

phase a as shown in Fig.2. Similarly the turn on and turn off 

instants in phase b and c can be written as ɸb, Tb and ɸc, Tc 

respectively. The conversion used to transfer three phase abc 

variables to DQO is given by: 

 

 

The conduction period of the thyristor in any one phase is 

shown in Fig.2. During the conduction interval of the thyristor, 

the TCSC is modeled as a parallel LC circuit and the 

corresponding differential equation in dq0 reference frame for 

phase a can be written as Eqn.6 and 7: 
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When the thyristors are turned off, the inductor currents are 

zero and hence TCSC is modeled as a simple series capacitor 

circuit. Then the corresponding voltage equation for phase a 

can be written as: 

 

The state space representation of phase a can be represented as: 

 

Where 

 

Where P=[1 0] and ya = Va. Similar equations can be written 

for phases b and c with 1200 and 2400 phase shift. 

 

 

To derive TCSC model in state space form, the voltage 

equations in phases a, b and c in (k + 1)th instant can be 

represented as functions of phases voltages and phase currents 

in kth instant and phase currents in (k+1)th instants as shown in 

Eqn. 13. 

 

 

 

are the change in thyristor turn on and turn 

off instants respectively in b phase. From the derivation of F, 

H, J and G matrices [15], it is found that the variation in 

capacitor voltage in any phase is independent of the turn off 

time of the respective thyristor. In this model formulation, we 

have considered that the change in current during a sampling 

interval is a function of time and it is linearly varying during 

any sampling interval. This change in current can be written as: 
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The matrix equation of discrete LTI TCSC model in DQ0 

reference frame after the transformation is given by: 

 

Where  

 

The time varying transformation matrix T is evaluated (5) at 

instants t0 as T(t0)and t1 as T(t1) . Similar equations can be 

written for other phases also. It is observed that the state space 

equations are not sample invariant. i.e., for any sample, the 

matrix at kth interval and (k + 2)thinterval are same. It is also 

observed that the sign of all coupling terms between zero 

sequence variables and DQ variables in the F, G matrices and 

the last row of H matrix alternates at consecutive sampling 

instants. In this discrete model of TCSC, to make the model 

sample invariant, a transformation is applied to the zero 

sequence variables as given in equation: 

 

Where k indicates any sample. After the above transformation, 

the sample invariant TCSC equations can be obtained as : 

 

It is found that the sample invariant transformation is 

consistent and the transformed zero sequence components 

retain their coupling to D and Q components of currents and 

voltages. When the developed TCSC model is interfaced with 

the rest of the power system, the discredited zero sequence 

variables of the system is also to be transformed (Eqn. 21 and 

22) to obtain the time invariance. 

 

4. MODEL OF THE REST OF THE SYSTEM 

The rest of the system consists of turbine-generator system, 

transmission line, PLL and TCSC controller. The schematic 

diagram of the full system with TCSC is shown in Fig.3. TCSC 

voltage VDQ0 is the input for the rest of the system. 

 
Fig.3. Block diagram representation of a controller connected 

to TCSC 

 

A. Turbine -Generator model 

The system considered here is the IEEE First Benchmark 

model which has totally six masses including the generator and 

exciter. Synchronous machine considered in this study is 2.2 

models where the first digit refers to the number of windings in 

the q-axis [IEEE (1986)]. In 2.2 model, three phase armature 

windings (a, b and c) on the stator and four windings on the 

rotor including the field winding ’f’ are placed . The amortisser 

(or damper) circuits in the salient pole machine or the eddy 

current effects in the rotor are represented by a set of coils with 

constant parameters. Three damper windings, ’h’ in the d axis 

and g, k in the q axis are placed. Following assumptions are 

made in the derivation of the basic electrical equations of the 

machine: 

 

• The mmf in the air gap is distributed sinusoidally and the 

harmonics are neglected. 

• Saliency is restricted to the rotor. Effect of slots in the stator 

is neglected. 

• Magnetic saturation and hysteresis are ignored. 

 

The mechanical system consisting of rotors of generator 

exciter, turbines and shafts can be viewed as a mass – 

springdamper system. Assumptions made in the modeling of 

mechanical system are: 

• The system masses are considered as lumped masses. 

• Slip at the operating point is zero. 
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Assuming the fluxes linking with different rotor coils are free 

of harmonics, the time invariant linearised model about an 

equilibrium point can be written as : 

 

 

B. Electrical network model 

Electrical AC network consists of transformers, transmission 

lines with fixed series compensation. Transformers are 

modeled by representing its equivalent leakage reactance Xt 

and the transmission lines are represented by its equivalent 

impedance as shown in Fig. 1. The state space representation 

of the electrical network is represented as: 

 

 

C. Current synchronised PLL 

A current synchronised PLL is designed for the setting of firing 

scheme for TCSC. The set time for firing of the thyristor starts 

from the previous zero crossing of the line current. The timing 

signal generated by PLL in steady state ɵt is shown in Fig.4. 

 
 

Fig.4. Operation of PLL 
 

The state space equation of PLL can be expressed as : 

 

 

D. The conventional TCSC controller model 

The conventional TCSC controller controls the firing angle α 

of the thyristor to meet the required objective. The 

conventional controller consists of a gain block, a signal 

washout block and a phase compensation block as shown in 

Fig.5. The phase compensation block provides the appropriate 

phase lead characteristics to compensate for the phase lag 

between input and output signals. The signal washout block 

serves as a high pass filter which allows signals associated with 

oscillations in input signal to pass unchanged. 

 
 

Fig. 5. Structure of a conventional controller 
 

The general form of controller equation is given by: 

 

 

 



IJRET: International Journal of Research in Engineering and Technology                        ISSN: 2319-1163 

 

__________________________________________________________________________________________ 
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org                                                                                     730 

E. The interfaced discrete-time model of the system 

Combining the discretised equations of generator-turbine, 

transmission network and the PLL with the discrete model of 

TCSC, the overall system equation can be written as: 

 

 

Where h is the sampling time. Eigen values of the system with 

the conventional controller is shown in Table 1 in which, K 

represent the gain of the conventional controller. As shown in 

Table 1, increased gain can stabilize the swing mode, but 

torsional mode 4 gets destabilised. Hence it is observed that, 

the simultaneous damping of all modes using the conventional 

controller is difficult. It may be desirable to have a separate 

Power Swing Damping Controller (PSDC) and sub-

synchronous Damping Controller (SSDC). In the next section 

the design of DLQG compensator is discussed for the above 

system which gives simultaneous damping of torsional mode 

as well as the swing mode oscillations. The conventional 

PSDC along with SSDC for damping SSR as well as swing 

mode oscillations can be replaced by a single robust DLQG, 

which also guarantees the system stabilisation also. 

  

5. ROBUST CONTROL DESIGN USING 

DISCRETE LINEAR QUADRATIC GAUSSIAN 

(DLQG) COMPENSATOR 

DLQG design is an optimal control design which produces the 

best possible control system for a given set of performance 

objectives. Usually a quadratic cost function known as 

performance index of the system states and control signal must 

be minimised by feeding back the optimal states. In most of the 

practical systems, all the system state variables are not 

available for the measurement. Hence it is necessary to use an 

optimal estimator for state estimation. In this work the design 

of DLQG involves the design of Kalman filter as an optimal 

estimator, and the estimated states are fed back to the system as 

state feedback control law. 

 

A. The design of state feedback controller 

The discrete system to be controlled is represented in the state 

space form as: 

 

Where Q is a symmetric positive semi definite state weighting 

matrix and R is a symmetric positive definite control weighting 

matrix. The optimisation function represents the weighted sum 

of energy of the states and control. The gain K of the optimal 

controller is derived from the algebraic discrete time Riccati 

equation given by: 

 

Where P is the solution of the Riccati equation the optimal 

control can be expressed as: 

 

In stochastic systems, this control law guarantees to bring the 

system states close to zero. This is an advantage of the linear 

quadratic method that a stabilising controller is obtained where 

as in classical controls, the stabilising controller is designed 

separately. 

 

B. The design of Kalman filter as an optimal 

estimator 

The Kalman filter is an optimal state estimator for linear 

dynamical systems, which minimises the estimation error given 

as: 

 

And this linear minimum mean square problem can be solved 

recursively. A noisy plant with the presence of modelling 

uncertainties called process noise and measurement noise can 

be modeled by passing white gaussian noise through an 

appropriate linear system. Such a plant can be represented in 

state space form as: 
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Where v(k) is the process noise vector produced due to 

modeling errors and z(k) is the measurement noise vector. 

These noises can be assumed as uncorrelated white Gaussian 

zero mean stationary noises. 

 

The optimal Kalman filter gain can be represented as: 

 

 

Where R(k) is the optimal covariance matrix satisfying the 

matrix Riccati equation. The dynamics of the controller can be 

expressed as: 

 

 

 

The system stability robustness depends on the weighting 

matrices Q and R. By analysing the dominant parameters that 

effect SSR like mechanical parameters, the weighting matrices 

are properly tuned assuring system stability robustness. The 

order of the DLQG compensator designed for a system is same 

as the order of the system. Hence the implementation of such a 

large controller is practically difficult and it is advisable to 

reduce the controller order. The order reduction can be done in 

two ways. Either the system order will be reduced and then the 

controller is designed for the reduced system or the controller 

is designed for large systems and then reduces the order of the 

controller. 

 

C. Model order reduction of DLQG 

Standard methods are available for the model order reduction 

of the large system like Pade’s approximation , model 

approximation or continued fraction expansion etc. In this 

study, model order reduction by four different methods are 

tried namely, balanced realisation technique, optimal Hankel 

norm approximation technique, truncated balanced realisation 

and truncated residualisation technique. Figure 8 shows the 

frequency response plotted by using different techniques. 

 

By comparing the results obtained in different methods, 

theresponse obtained by Hankel norm approximation technique 

closely matches with the original system. Hence in this work, 

the Hankel norm approximation technique is chosen for 

orderreduction and the controller order is reduced from 27 to 

11. This order reduction assures the desirable performance and 

stability robustness of the controller. After reducing the order 

of the controller, the reduced controller is connected to the 

original system. In this work, the model order reduction is done 

using μ control toolbox in MATLAB. 

 
 

Fig.6. Comparison of different model order reduction 

techniques 
 

6. SIMULATION RESULTS 

Simulation studies are conducted on the IEEE FBM for SSR 

studies which is enhanced with TCSC. The system consists of 

892.4 MVA synchronous generators connected to an infinite 

bus through a series compensated 500kV transmission line. 

 

Mechanical damping of the system is assumed to be zero in the 

analysis in order to present the worst case damping conditions. 

In order to reduce the complexity, all calculations are made in 

p.u, taking 500kV as the base value. The simulation scenario is 

as follows. The system is operating in its steady state condition 

for a given operating condition. Then an impulse increase in 

torque for 10% is injected to the shaft section connecting the 

masses LPA and LPB and the simulations are carried out for 

different operating conditions. 

 

The torsional mode stability has been analyzed using the eigen 

value technique. Results of this analysis with different firing 

angles of the thyristor are consolidated in Table II through 

Table V. It has been observed from Tables III and IV that the 

unstable torsional mode 4 gets stabilised by DLQG and that the 

damping of all other torsional modes are increased with 

DLQG. Damping of all the torsional modes are drastically 

improved with DLQG as shown in Table V for the firing angle 

α = 170
0
. 
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The pole-zero mapping of the system with and without DLQG 

for three different firing angles of TCSC are shown in Figures 

7 through 12. From these figures, it has been observed that 

most of the poles on the surface of the unit circle are pushed 

towards the center of the circle with DLQG compensator. It 

has been observed that, in the case of the system with and 

without DLQG, zeros of the system is the same, but the 

locations of the poles are quite different. It can be seen that the 

system in open loop is unstable with poles outside the unit 

circle, whereas this mode becomes very well damped with 

DLQG. The stability of most of the torsional modes is 

improved with DLQG. 
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7. ROBUSTNESS EVALUATION 

Extensive simulations have been carried out to assess the 

robustness of the proposed DLQG compensator for TCSC in 

different operating conditions. The real power is varied from 

0.2 p.u to 1.2 p.u and the terminal voltage is varied between 

0.5 p.u to 1p.u. As the stability of the torsional modes varies 

with the mehanical parameters of the system like inertia and 

spring constant as shown in Fig. 13 and Fig. 14, in order to 

reflect the parameter uncertainties, the random errors with the 

variation of 10% to 70% are added to these parameters of each 

mechanical mass. Similarly the level of series compensation is 

varied from 10% to 70% by changing the firing angle. In all 

these cases, the DLQG is designed such that the maximum 

overshoot in each state variable doesnot exceed more than 3% 

and settling time must be less than 2 seconds after the 

occurence of the disturbance. The system performance has 

been analyzed using a reduced order controller also and it has 

been observed that the performance of the system with the 

reduced controller is matching with that of the full order 

controller. 

 

 

 

 

 

 

The results of the eigen analysis conducted on the system with 

the conventional controller is shown in Table VI. As seen in 

this table, when the gain of the conventional controller 

increases, torsional mode 4 gets undamped even though the 

damping of the other modes increases. The simultaneous 
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damping of all the torsional modes using the conventional 

controller is difficult. Hence, it is desirable to have a separate 

Power Swing Damping Controller (PSDC) to damp swing 

mode oscillation and a Subsynchronous Damping Controller 

(SSDC) to damp SSR oscillations. The simultaneous damping 

of torsional as well as the swing mode oscillations is possible 

with the DLQG compensator and damping of all the torsional 

modes are improved with DLQG compensator. 

 

Optimal solution of the cost function and hence the 

simultaneous damping of the swing mode and torsional modes 

can be achieved by properly tuning the Q and R 

matrices(weighing matrices of system states and the control 

inputs) in the cost function. 

 

 

 

A comparison of the stability of torsional modes, swing mode 

and the network mode are made with a conventional controller, 

DLQG compensator and without any controller as shown in 

Table VII and Table VIII for different thyristor triggering 

angles.  

 

It has been observed that the damping of all modes is highly 

improved with DLQG compensator compared to a 

conventional controller. In order to prove the controller 

robustness, the system performance with the proposed 

controller is evaluated for various operating conditions. When 

a small change in the torque is applied to the shaft section 

between masses LPA and LPB, it produces changes in other 

shaft sections. Figures 15 through 17 shows the deviation of 

torque in different shaft section for real power P=1pu, terminal 

voltage V=1pu and thyristor firing angle of 1650. The torque in 

the shaft sections connecting the generator and the exciter is 

very small compared to other shaft sections as shown in Fig. 16 

and its maximum value is nearly 0.03 p.u. But the oscillations 

persist for longer duration. The variation of torque in shaft 

section connecting between masses HP and IP is having 

minimum deviation. All these oscillations are having 

maximum deviations only for few cycles and after that its 

magnitude decreases drastically. 

 

 
 

 
 



IJRET: International Journal of Research in Engineering and Technology                        ISSN: 2319-1163 

 

__________________________________________________________________________________________ 
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org                                                                                     735 

 
 

The maximum deviation of torque is 0.22 p.u and it occurs in 

the shaft section between masses LPA and LPB, as shown in 

Fig. 17. Within 2 to 3 secs., this deviation reduces to zero. The 

response of the system for other operating conditions is as 

shown in Figures?? through??. Figure?? Through 20 

corresponds to the operating conditions the real power 

P=0.7pu, terminal voltage V=0.9pu, thyristor firing angle α= 

1650 and inertia of the mass LPB is reduced to 70% of its 

normal value. In the operating conditions real power P=.9pu, 

V=1pu, the thyristor firing angle α = 1700 and if the inertia 

constant of the mass LPB is increased by 30% of its normal 

value, the performance of the system with the proposed 

controller varies as shown in Figures 21 through 23. When the 

real power P=0.8pu, voltage=0.8pu and the thyristor firing 

angle α = 1700, the performance of the system varies as shown 

in Fig 24 through 25 
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Similarly, by changing the stiffness of the shaft, the 

performance of the sysstem with the controller is evaluated for 

different operating conditions as shown in Fig. 26 through Fig. 

31. Figures 26 through 28 corresponds to the operating 

condition of real power generation of 0.9 pu, terminal voltage 

V=1pu and thyristor firing angle α = 1650. The stiffness of the 

shaft section connection between masses IP and LPA is 

reduced to 80% of its normal value. 

Similarly, for the same operating conditions, when the stiffness 

of the same shaft section is increased by 20%, the oscillations 

prolong for more time at the same time, the controller provides 

damping also as shown in Figs. 29 through 31. It has been 

observed that the proposd controller give desirable damping of 

the torsional as well as the swing mode oscillations for all 

these operating conditions which proves its robustness. 
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The responses of the system with the reduced DLQG 

compensator are as shown in Fig. 32. Initially, the DLQG 

compensator is designed for the system with 27 states, which 

results in a compensator of order 27. Then, by using Hankel’s 

norm approximation technique, the order of the controller is 

reduced to 11 [?]. The performance of the system with reduced 

order DLQG compensator is then compared with the 

performance of the system obtained with the full order DLQG. 

 

 

 
 

It has been observed that the performance of the reduced 

controller is exactly matching with the full order compensator. 

In short, the model order reduction techniques can be 

effectively used to reduce the complexity of implementing the 

DLQG compensator in large systems without affecting the 

major system dynamics. 

 

Figures 33 to 35 show the variation of system response with 

and without the DLQG controller. From these figures, it can be 

observed that the damping of the torsional modes is improved 

with the use of DLQG controller. 

 

From these observations, it can be concluded that an effective 

control of TCSC is possible with DLQG controller. Figures 11, 

14 and 15 show the variation of slips in different masses of the 

mechanical system. Figure 12 and 13 shows the variation of 

torque in different shaft section. The maximum torque 

deviation occurs in the shaft section between masses LPA and 

LPB as shown in Fig.12, but it exists only for a small duration. 

The simulation results verifies the eigen analysis result. As 

given in Table 2, even after the major disturbance, the torsional 

mode 4 is well damped as shown in simulation graphs. 
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CONCLUSIONS 

In this paper, the use of a discrete model of TCSC interfaced 

with the rest of the system in IEEE FBM for SSR analysis and 

the DLQG compensator design for damping SSR oscillations 

has been discussed. The design of DLQG involves the design 

of Kalman estimator for state estimation and state feedback for 

control law. By conducting eigen analysis on the study system. 

it is observed that unlike in a conventional controller, the 

simultaneous damping of swing mode as well as the torsional 

oscillations are possible with DLQG. Performance of the 

proposed controller is tested for various operating conditions 

and proved the robustness of the controller. 
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