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Abstract 
In this paper, we suggest a new cache consistency maintenance scheme, namely Scalable distributed cache indexing for Cache 

Consistency (SDCI), for mobile environments. It mainly depends on 3 key features. They are: (1) Utilization of standard bits at server 

and Mobile Node's cache for maintaining cache consistency; (2) Utilization of Local Cache Standard (LC-standard) for all entries in 

Mobile Node's cache after its invalidation for maximizing the broadcast bandwidth efficiency; (3) Making every valid entry of Mobile 

Node's cache to whenever it wakes up. These features make the SDCI a good scalable algorithm with minimum database management 

overhead. By observing Comprehensive simulation results we can see that the performance of SDCI is superior to those of existing 

algorithms. 
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1. INTRODUCTION 

The use of wireless communication has been increasing day-

by-day and has become a significant means for people to 

access different kinds dynamically changing data objects, such 

as news, stock price, and traffic information. But, wireless 

mobile computing environments are restricted by 

communication bandwidth and battery power [1], and have to 

survive with Mobile Node's disconnectedness and mobility. 

So, data communication in wireless mobile networks is 

difficult compared to that of wired networks. 

 

Caching frequently used data objects at the local buffer of a 

Mobile Node is a better way to decrease query delay, save 

bandwidth and ameliorate system performance. However, in 

wireless mobile computing environments, difficulty in cache 

consistency arises with the frequent disconnection and 

roaming of an Mobile Node. A strategy that is successful must 

be able to efficiently handle both disconnectedness and 

mobility. The advantage with the broadcast is that it is able to 

serve an arbitrary number of Mobile Nodes with minimum 

bandwidth consumption. So, efficient mobile data 

transmission architecture should prudently design its broadcast 

and cache management schemes to maximize and minimize 

delay. Efficient mobile data transmission architecture should 

also be scalable, such that it works efficiently for large 

database systems and also upholds a large number of Mobile 

Nodes. 

 

In the literature, there exist 2 types of cache consistency 

maintenance algorithms for wireless mobile computing envi-

ronments. They are stateless and state-full. In the case of 

stateless approach, the server doesn’t know the client's cache 

content. The client requires for verifying the validity of cached 

entries from the server before each and every query. Even 

though stateless approaches use simple database management, 

their scalability and capacity to uphold disconnectedness are 

poor. On the other hand, approaches are scalable. However, 

they cause significant overhead because of server database 

management. So, there is a necessity to develop scalable and 

efficient algorithms for maintaining cache consistency in 

mobile environments. 

 

Inspired by the necessity for a scalable and efficient cache 

consistency maintenance mechanism, we put forward a new 

algorithm, namely scalable asynchronous cache consistency 

schema (SDCI) that maintains cache consistency between the 

Central Data Provider (CDP) and Mobile Node's caches. SDCI 

is a highly scalable, efficient, and low complexity algorithm 

because of the 3 key features: (1) Utilization of standard bits at 

server and Mobile Node's cache for maintaining cache 

consistency; (2) Utilization of an iD for each and every entry 

in Mobile Node's cache after its invalidation for maximizing 

the broadcast bandwidth efficiency; (3) Making all valid 

entries of Mobile Node's cache to uncertain state when it 

wakes up. 

 

Comprehensive simulation results reveal that SDCI gives 

superior performance than existing algorithms. Taking an 

example, in a system having different types of Mobile Node 

access patterns and  data object update frequencies, SDCI will 

be able to support about 44 percent and 270 percent more 

Mobile Nodes than  Timestamp (SSUM) schemes, 

respectively. It also makes sure that the average access delay 

is no larger than seconds. 
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Remaining part of the paper is organized as given below. 

Section ii is a brief overview of the related work. In Section 

III, complete description of the SDCI algorithm is given. 

Section IV gives comprehensive simulation results of the 

algorithm and after that compares it with already existing 

procedures. Section V is about the conclusions drawn. 

 

2. RELATED WORK 

We summarize existing stateless and stateful processes in this 

section. In the stateless approach [2]-[7], a CDP presumes no 

knowledge of Mobile Node's cache contents. CDP sends 

CUAs to its Mobile Nodes sporadically. At an Mobile Node, a 

data object request cannot be serviced until the next IR from 

the CDP is received. In the stateful approach [8], an CDP 

preserves object state for each Mobile Node's cache and only 

broadcasts CUAs for those objects. 

 

Barbara and Imielinksi [2] put forwarded 3 stateless algo-

rithms: Timestamps (SSUM), Amnesic Terminals (AT) and 

Signature (SIG). In these algorithms, the CDP broadcasts 

CUAs, that consist all data object IDs that are updated during 

the past seconds (where is a positive integer), every seconds. 

The benefit of these algorithms is that an CDP does not 

maintain any state information about its Mobile Node's 

caches, and this makes the management of CDP database very 

easy. But, there are many disadvantages with these algorithms. 

The first problem is that they do not scale well to large 

databases and/or fast updating data systems, because of 

increased number of IR messages. The second one is that the 

average access latency is usually longer than half of the 

broadcast period. This is because all requests can be answered 

only after the next IR. Lastly all cached data objects are 

dropped in the case of the sleep time is longer than. 

 

For handling the long sleep-wake up patterns, various 

algorithms have been suggested. Going by example, in the bit- 

sequence (BS) algorithm because of Jing, et al. [3], every 

cache entry is deleted only when half or more of the data 

entries in the cache have been nullified. But, the model needs 

the broadcast of a very large number of IR messages 

compared to that of SSUM and AT schemes. Wu et al. [5] 

suggested an uplink validation check scheme which will be 

able to deal with long sleep-wake up themes better than 

SSUM and AT. However the problem with this approach is 

that this approach needs more uplink bandwidth and cannot 

deal with long sleep-wake up patterns. 

 

A very few stateful cache consistency maintenance algorithms 

have been suggested for wireless mobile computing 

environments. Khaleel Mershad et al[12] proposed a smart 

server update mechanism for Maintaining Cache Consistency 

in Mobile Environments. Though the solution is impressive 

when compared to most frequently cited solutions in earlier 

literature, but still it is probabilistic to make available data in 

cache for nodes,. 

 

In AS, an CDP records all retrieved data object for each and 

every Mobile Node. After an Mobile Node first gets back a 

data object after it wakes up, the CDP sends an IR, depending 

on the Mobile Node's cache content record and sleep-wake up 

time, to that respective Mobile Node. When an CDP gets an 

update from the original server for all the recorded data 

objects, it broadcasts that data object's IR to Mobile Nodes. 

The benefit of the AS scheme is that the CDP averts needless 

broadcast of CUAs to Mobile Nodes and also it can deal with 

any sleep-wake-up pattern without losing any valid data ob-

ject. But, for maintaining each Mobile Node's cache state in 

the CDP, the CDP must and should record all cached data 

objects for each and every Mobile Node. So an Mobile Node 

can be able to download data objects which it requested using 

the uplink. This renders the channel utility inefficient and 

sensitive to the number of Mobile Nodes. 

 

3. SCALABLE DISTRIBUTED CACHE INDEXING FOR 

CACHE CONSISTENCY (SDCI) 

In this particular paper, we suggest a new Scalable distributed 

cache indexing for Cache Consistency (SDCI) for maintaining 

Mobile Node's cache consistency that is used in a read-only 

system. SDCI is a hybrid of stateless and stateful procedures 

which means that it maintains minimum state information. 

But, unlike the stateful algorithm [12] that makes the CDP to 

remember all data objects for all Mobile Node's cache, SDCI 

needs only the CDP to recognize which data objects in its 

database might be valid in Mobile Node's caches, making the 

management of the CDP database much simpler than usual. 

However, unlike prevailing synchronous stateless processes, 

SDCI does not need periodic broadcast of CUAs, decreasing 

IR messages that are required to be sent through the downlink 

broadcast channel. Also, by appending uncertain and Local-

Cache states in Mobile Node's caches, SDCI makes easy 

handling of arbitrary sleep-wake-up patterns and mobility, and 

good cooperation among all Mobile Nodes that greatly 

enhances broadcast channel efficiency.  The subsections that 

follow explain the suggested algorithm in detail. 

 

A. Data Structures and Message Formats 

For each and every data object having distinct identifier x , the 

data structure for CDP and Mobile Node's cache are as given 

below: 

• ( , , )x x xd t f  Data entry format for each data object in 

CDP. Here xd , is the data object, xt is the last update time 

for the data object and xf  is a flag bit.  

• ( , , )x x xd ts s :data entry format in an Mobile Node's 

cache. Here xd is defined above, xts is the time stamp 

showing the last updated time for the cached data object 

xd dx, and xs is a two-bit flag recognizing 4 data entry 
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states: stable , uncertain , waiting And 

LC standard respectively. 

 

B. Mobile Node Cache Management 

As this paper is mainly about the cache consistency mainte-

nance design, we utilize the LRU (Least Recently Used) based 

replacement algorithm for managing Mobile Node's caches. 

The effect of the cache replacement algorithms on SDCI is 

studied later. 

 

In LRU based replacement scheme, a data object that is 

recently cached or a cached data object that gets a hit is 

relocated to the head of the cache list. Whenever a data object 

requires to be cached and the cache is full, data entries with sx 
  2   from the tail are removed for creating enough space in 

order to accommodate this new data object (the data object 

with sx = 2 must be kept so that  some requests are waiting for 

its confirmation). 

 

Any refreshed data objects from uncertain state or Local-

Cache state are moved to their original location and again, if 

required, sufficient data entries from the tail are deleted. 

 

C. Algorithm Description 

We have given 2 procedures, i.e., CDP-trans () and Mobile 

Node transactions, for the SDCI. The CDP continuously 

performs the CDP-trans () and each Mobile Node 

continuously performs the Mobile Node Transactions method 

during its awake period. 

 

The pseudo codes for CDP-trans () and Mobile Node 

Transactions are as shown in Figures 1 and 2. 

 

CDP-trans ( ( )request x ) { 

( )sts findStatus x  

( )if sts available begin 

Broadcast , ,x xd t x  

rValue available  

( 0)xif f   

1xf   

End; 

( )if sts uncertain  

( )x xif t ts  

Broadcast ( , )xx t  

rValue confirm  

else  

Broadcast , ,x xd t x  

rValue available  

( 0)xif f   

1xf   

( )if sts update  

Update the database entry (  

'&& 'x x x xd d t t  ) 

( 1)xif f  begin 

Broadcast 

( )cua x  

0xf   

End; 

 

 

Fig1:CDP-trans 

 

D. Cache Consistency Maintenance 

We explain in detail how SDCI sustains consistency between 

an CDP database and Mobile Node caches. We presume that 

the consistency between the CDP database and original 

servers is sustained using wired network consistency 

algorithms [9], [10]. 

 

For each and every cached data object, SDCI utilizes a single 

flag bit xf
, for maintaining the consistency between the CDP 

and Mobile Node caches. Whenever xd
 is recovered by an 

Mobile Node, fx is set, showing that a valid copy of xd
  may 

be ready to use in an Mobile Node's cache.  Whenever the 

CDP gets an updated xd
, it broadcasts and resets. This action 

shows that there are no valid copies of xd
 in any Mobile 

Node's caches. Also, further updates do not necessitate 

broadcast of IR(x).  

 

The flag is set again whenever the CDP services restoration 

(comprising request and confirmation) for xd
 by an Mobile 

Node. 

In mobile environments, an Mobile Node's cache is in either 

of two states: (i) awake or (ii) sleep. In the case of an Mobile 

Node is awake at the time of IR(x) broadcast, the xd
 copy is 

invalidated and an ID-only 
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mnRequestHandler(

( )xreq d ) { 

( )xsts reqStatus d  

( )if sts stable  

Update cache list 

Return 

( )xcached d  

( )if sts uncertain   

Add x to waiting 

list 

Set 2xs   

Update cache list 

head with this entry 

Return 

( , )xuncertain x ts   

( )if sts unavailble   

send request to 

CDP  

add x to query 

waiting list 

} 

mnResponseHandler(

( )xresp d ){ 

( )sts status x  

( )if sts available   

Remove x from cache 

Add x to cache head 

return xd  

( )if sts waiting  

//ELSE IF (entry x is ID-

only entry in cache )  

mnRequestHandler(

( )xreq d   

  ( )elseif sts uncertain   

( )x xif ts t  

0

x x

x

ts t

s




 

mnRequestHandler(

( )xreq d   

else  

0xs   

} 

mnCacheUpdateAlertHand

ler( ( )cua x ){ 

( ( ))msg reqStatus cua x

 

( )xsts reqStatus d  

(( )&&( || ))if msg update sts available sts uncertain  

 

begin 

3xs   

( )xremove d  

end 

} 

( ) &&( ) &&( )x xelseif msg confirm sts uncertain ts t  

 

 0xs   

( )&&( )elseif msg confirm sts waiting 

 

 Return xd  

else  

( )xdelete d  

3xs   

} 

 

 

 

 

 

 

 

 

Fig2: Mobile Node Transactions 

 

Entry is sustained by the Mobile Node. The data objects of a 

Mobile Node in the sleep state are not affected until it wakes 

up. Whenever an Mobile Node wakes up, it sets all cached 

valid data objects (including) into the uncertain state. As a 

result sleeping Mobile Nodes and the cached objects are not 

affected by missing broadcast. 

 

E. Efficiency and Cooperation 

As stated earlier, a good cache consistency maintenance 

algorithm must be able to get scaled and also must be efficient 

in terms of the database size and the number of Mobile Nodes. 

SDCI are able to handle large and fast updating data systems 

as the CDP has some knowledge of Mobile Node's cache. 

Only data entries that have standard bits set result in the 

broadcast of IBs whenever data objects get updated. As a 

result, the IR broadcast frequency is the minimum of the 

uplink query/confirmation frequency and the data object 

update frequency. Similarly, the broadcast channel bandwidth 

consumption for CUAs is minimized. 

mnWakeupHandler(){ 

( 0)

1

foreach s

s



  
} 
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In addition to IR traffic, all other traffic in SDCI is also mini-

mized because of the strong cooperation among the Mobile 

Node's caches. Specifically, this is because of the introduction 

of the uncertain state and the Local-Cache state for the Mobile 

Node's caches. The recovery of a data object, xd
 from the 

CDP allotted by any given Mobile Node makes the x entries in 

the uncertain or Local-Cache state in all the awake Mobile 

Node's caches to a valid state. Also, a single uplink con-

firmation for in the uncertain state makes the entries in 

uncertain state for all the awake Mobile Node's caches to 

either valid or Local-Cache state. The addition of the uncertain 

state also helps an Mobile Node's cache in order to keep all the 

valid data objects after it wakes up from duration of sleep 

time. In contrast, for  SSUM algorithms, every invalidated 

data object is completely removed from the Mobile Node's 

cache. This helps in bringing little cooperation among the 

Mobile Nodes, creating a dramatic increase of traffic volume 

between the CDP and the Mobile Nodes as the number of 

Mobile Nodes increases (see in Section V). Even though it 

improves the scalability of SSUM by holding the invalid data 

objects, it decreases the cache efficiency by keeping the 

invalid data objects, instead of IDs as is the case in our SDCI 

approach, in the Mobile Node's cache. 

In variance with the AS scheme that needs O(MN) buffer 

space in the CDP for keeping all the Mobile Node's cache 

state, our procedure only requires one bit per data object in the 

CDP showing that if the broadcast is necessary whenever the 

data object is updated. Also, the added management overhead 

is minimal as it needs only a single bit check and set/reset. 

 

F. Mobility 

Generally, synchronous stateless procedures handle Mobile 

Node's mobility by presuming that all CDPs broadcast the 

same CUAs .But, in the case of the number of CDPs being 

large, those systems cannot be scaled. There is no other 

alternate way for handling the Mobile Node's mobility in the 

literature. In our approach, an Mobile Node roaming into a 

new cell is considered as if it just woke up from the sleep 

state, i.e., every valid data object is set to the uncertain state. 

The consistency is guaranteed by using this approach and 

every valid data object is retained. Moreover, SDCI is simple 

because it is transparent to the CDPs engaged. In this 

approach, the roaming effect is nothing but the addition of a 

new sleep-wake-up pattern and should not have any 

substantial impact on the overall performance. This paper 

emulates the roaming effect by a sleep-wake-up pattern. 

 

4. PERFORMANCE EVALUATION BY 

SIMULATION 

A. simulation setup 

We take into consideration a single cell system with one CDP 

database and multiple Mobile Nodes having identical cache 

size. The request process for each Mobile Node is presumed to 

be Poisson distributed and the update processes for data 

objects are also Poisson distributed. Moreover, the sleep-

wake-up process is made into a model having a two-state 

Markov chain. 

 

In our simulation, we utilized a single channel with bandwidth 

CB for both downlink as well as uplink data transmission. 

Every message is queued and serviced based on a first-come-

first- serve basis. Every request is neglected whenever an 

Mobile Node is in the sleep state. Error recovering cost and 

software overhead are also neglected. Whenever a requested 

data object is available at an Mobile Node's local cache, the 

delay AQD is counted as 0. A Zip f—like distribution Mobile 

Node access pattern [11] is utilized in the simulation. 

 

The following subsections give a comprehensive comparison 

of the suggested SDCI with SSUM algorithms by means of 

metrics and for 3 distinct cases. The average access delay is a 

significant measurement of system performance, a shorter 

AQD, a better performance. The uplink per query is associated 

to cache hit ratio. Whenever an Mobile Node receives a query, 

in the case of the queried data object being valid in the cache, 

a cache hit is counted, and no uplink is required for the query. 

So, higher hit ratio, fewer uplink per query. 

 

B. Case Studies 

Three cases are given here. In each case, ub
=64 and bd = 64 

for both SDCI, and bu = 10 and bd = 10 for SSUM[12]. 

The bandwidth is set as CB=10000bps. Cache size is in units 

of the number of data objects and the maximum number of ID-

only entries is also set to in the first two cases. Data object 

sizes and data object update frequencies. They will be 

provided later in detail and @ is used to denote them in Table 

II. Each and every case study correlates to a parameter effect 

that is shown by * in the column. 

 

Case 1: Effect of CDP Database Size 

Table 1 shows the simulation results of AQD and UPQS for 

two algorithms with distinct database sizes. 

 

From Table III, we see that SDCI outperforms the SSUM [12] 

on both performance metrics for distinct database sizes (N). 

Whenever the database size reaches approx 13000, AQD for 

SSUM is over 160 sec. But in case of SDCI, we can observe a 

slow increase of the performance metrics as increases all the 

way up to approx N value 13000. 

 

In brief, the performances of SDCI are insensitive to the 

database size N and so it can be used to scale large database 

sizes. But, the performance of SSUM is responsive to the 

database size, specifically in terms of the delay 

performance, and so SSUM cannot be used to scale large 

database sizes. 

 

Case 2: Effect of Data Update Rate 

  

 



IJRET: International Journal of Research in Engineering and Technology                        ISSN: 2319-1163 

 

__________________________________________________________________________________________ 
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org                                                                                    433 

Table IV shows the simulation results of the effect of update 

interval ut . Moreover, it is observed SDCI outperforms SSUM 

[12] for all these performance metrics. As assumed, as ut  

declines, both performance metrics increase for all these 

algorithms. But, SDCI show slower rates of increase 

compared to SSUM for all the metrics. Particularly, whenever 

ut  is declined to 10 sec, the delay performance of SSUM is 

very large (about 50 sec) beyond acceptance. At this update 

interval, SDCI gets considerable delay performance gain over 

SSUM. For uplink per query, SDCI outperforms SSUM in the 

range of 5 to 30 percent. 

Case 3: Effect of the Number of Mobile Nodes. In this case 

study, we take into consideration a system identical to a real 

situation. We presume that a cell has 5 distinct Mobile Node 

query patterns as 

1

(10 50* )i
 


and s=0.9-0.2*I and Ts = 

500 * (i + 1) sec with i = 0,1,2,3 and 4. 

Each and every query pattern group has M/5 Mobile Nodes in 

it. We presume the query patterns for all the groups follow Zip 

f-like (z=1 ) distribution. The access popularity ranking for the 

neighboring groups is moved by 10, i.e., group I has declining 

popularity from data object 1 to 1000 and group 2from 11to 

1000 and then from 1to 10, and so on. 

We also presume that there are 5 types of data objects in the 

CDP as: 
500*( 1)pb i 

 and 
110 seci

uT 
with i= 

0,1,2,3 and 4 

 

Table1:  Average Query Delay per no of records 

 

  100 200 400 80

0 

1600 3200 640

0 

1280

0 

SD

CI 

0.16

5 

0.29

8 

0.42

9 

0.5

64 

0.67

9 

0.78

4 

0.8

96 

1.01

5 

SSU

M 

12.3

14 

12.9

74 

13.8

62 

14.

43

9 

14.9

94 

15.4

94 

17.

465 

161.

977 

 

per no of transactions 

  10 40 160 640 2560 10240 

SDCI 3.004 1.6 0.934 0.667 0.59

6 

0.573 

SSUM 50.006 36.9 17.139 15.488 15.0

96 

14.879 

 

Table 2: Uplink per query per no of records 

 

  100 200 400 800 1600 3200 6400 12800 

SD

CI 

0.2

34 

0.3

34 

0.4

28 

0.495 0.55

8 

0.59

9 

0.64

8 

0.673 

SS 0.7 0.7 0.8 0.861 0.89 0.89 0.92 0.924 

UM 56 93 32 3 5 2 

 

per no of transactions 

 

 

 
 

(a) Per no of records 

 

 
 

(b) Per no of transactions 

 

Fig 3: Line chart representation of Average query delay 

comparison between SDCI and SSUM 

 

 
 

(a)Per no of records 

 

  10 40 160 640 2560 10240 

SDCI 0.838 0.717 0.584 0.509 0.513 0.520 

SSUM 0.999 0.986 0.956 0.893 0.839 0.825 
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(b)Per no of transactions 

 

Fig 4: Line chart representation of uplink per query 

comparison between SDCI and SSUM 

 

Each and every data type group has N/5 data objects. 

 

The parameter values that are selected above depend on the 

understanding that a highly frequent query of Mobile Node 

usually implies a shorter awake time and in the case of a faster 

updated data object generally has a smaller size. The cache 

size is 150 Kbytes. The maximum number of data ID-only 

entries which can be put in each Mobile Node cache is set at 

100. 

 

Figures 3 and 4 describe AQD and uplink per query 

comparison between SDCI and SSUM, respectively. As we 

can observe, SDCI scales much better compared to SSUM in 

terms of both performance metrics.  

 

CONCLUSIONS AND FUTURE WORK 

In this paper, we suggested a Scalable distributed cache 

indexing for Cache Consistency (SDCI) for mobile 

environments. 3 key features of SDCI are: (i) use of standard 

bits at CDP and Mobile Node's caches to sustain cache 

consistency; (ii) utilization of a Local-Cache state for each and 

every entry in Mobile Node's cache after a data object 

becomes nullified; (iii) all acceptable data entries are set to the 

uncertain state after an Mobile Node wakes up. These main 

features make the suggested algorithm highly scalable and 

efficient. To be straight forward, SDCI is a hybrid of stateful 

and stateless algorithms. But, unlike stateful algorithms, SDCI 

sustains one flag bit for each and every data object in CDP to 

ascertain whenever to broadcast CUAs. On the flipside, unlike 

prevailing synchronous stateless procedures, SDCI does not 

need periodic broadcast of CUAs. So SDCI largely declines 

IR messages that are required to be sent through the downlink 

broadcast channel. SDCI gets the positive features from both 

stateful as well as stateless algorithms. Comprehensive 

simulation results reveal that the suggested algorithm higher 

performance compared to SSUM scheme. Future work will 

comprise studying the effect of distinct replacement 

algorithms on the performance of SDCI. Future study will also 

delve into the CDP cache management algorithm and the 

effective transfer cached data objects among CDPs when 

Mobile Nodes roam among distinct CDPs. 
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