
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 428

SDCI: SCALABLE DISTRIBUTED CACHE INDEXING FOR CACHE

CONSISTENCY FOR MOBILE ENVIRONMENTS

G. Lingamaiah
1
, S. G. Nawaz

2
, B. Dhanunjaya

3
, G. Peddi Raju

4
, K. Somasena Reddy

5

Gujjala.lingamaiah@gmail.com, sngnawaz@gmail.com, Bandidhanunjaya700@gmail.com, peddi.raju15@gmail.com,

Somasena12@gmail.com

Abstract
In this paper, we suggest a new cache consistency maintenance scheme, namely Scalable distributed cache indexing for Cache

Consistency (SDCI), for mobile environments. It mainly depends on 3 key features. They are: (1) Utilization of standard bits at server

and Mobile Node's cache for maintaining cache consistency; (2) Utilization of Local Cache Standard (LC-standard) for all entries in

Mobile Node's cache after its invalidation for maximizing the broadcast bandwidth efficiency; (3) Making every valid entry of Mobile

Node's cache to whenever it wakes up. These features make the SDCI a good scalable algorithm with minimum database management

overhead. By observing Comprehensive simulation results we can see that the performance of SDCI is superior to those of existing

algorithms.

Keywords: indexing, cache updating, mobile network, SDCI, SSUM

---***---

1. INTRODUCTION

The use of wireless communication has been increasing day-

by-day and has become a significant means for people to

access different kinds dynamically changing data objects, such

as news, stock price, and traffic information. But, wireless

mobile computing environments are restricted by

communication bandwidth and battery power [1], and have to

survive with Mobile Node's disconnectedness and mobility.

So, data communication in wireless mobile networks is

difficult compared to that of wired networks.

Caching frequently used data objects at the local buffer of a

Mobile Node is a better way to decrease query delay, save

bandwidth and ameliorate system performance. However, in

wireless mobile computing environments, difficulty in cache

consistency arises with the frequent disconnection and

roaming of an Mobile Node. A strategy that is successful must

be able to efficiently handle both disconnectedness and

mobility. The advantage with the broadcast is that it is able to

serve an arbitrary number of Mobile Nodes with minimum

bandwidth consumption. So, efficient mobile data

transmission architecture should prudently design its broadcast

and cache management schemes to maximize and minimize

delay. Efficient mobile data transmission architecture should

also be scalable, such that it works efficiently for large

database systems and also upholds a large number of Mobile

Nodes.

In the literature, there exist 2 types of cache consistency

maintenance algorithms for wireless mobile computing envi-

ronments. They are stateless and state-full. In the case of

stateless approach, the server doesn’t know the client's cache

content. The client requires for verifying the validity of cached

entries from the server before each and every query. Even

though stateless approaches use simple database management,

their scalability and capacity to uphold disconnectedness are

poor. On the other hand, approaches are scalable. However,

they cause significant overhead because of server database

management. So, there is a necessity to develop scalable and

efficient algorithms for maintaining cache consistency in

mobile environments.

Inspired by the necessity for a scalable and efficient cache

consistency maintenance mechanism, we put forward a new

algorithm, namely scalable asynchronous cache consistency

schema (SDCI) that maintains cache consistency between the

Central Data Provider (CDP) and Mobile Node's caches. SDCI

is a highly scalable, efficient, and low complexity algorithm

because of the 3 key features: (1) Utilization of standard bits at

server and Mobile Node's cache for maintaining cache

consistency; (2) Utilization of an iD for each and every entry

in Mobile Node's cache after its invalidation for maximizing

the broadcast bandwidth efficiency; (3) Making all valid

entries of Mobile Node's cache to uncertain state when it

wakes up.

Comprehensive simulation results reveal that SDCI gives

superior performance than existing algorithms. Taking an

example, in a system having different types of Mobile Node

access patterns and data object update frequencies, SDCI will

be able to support about 44 percent and 270 percent more

Mobile Nodes than Timestamp (SSUM) schemes,

respectively. It also makes sure that the average access delay

is no larger than seconds.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 429

Remaining part of the paper is organized as given below.

Section ii is a brief overview of the related work. In Section

III, complete description of the SDCI algorithm is given.

Section IV gives comprehensive simulation results of the

algorithm and after that compares it with already existing

procedures. Section V is about the conclusions drawn.

2. RELATED WORK

We summarize existing stateless and stateful processes in this

section. In the stateless approach [2]-[7], a CDP presumes no

knowledge of Mobile Node's cache contents. CDP sends

CUAs to its Mobile Nodes sporadically. At an Mobile Node, a

data object request cannot be serviced until the next IR from

the CDP is received. In the stateful approach [8], an CDP

preserves object state for each Mobile Node's cache and only

broadcasts CUAs for those objects.

Barbara and Imielinksi [2] put forwarded 3 stateless algo-

rithms: Timestamps (SSUM), Amnesic Terminals (AT) and

Signature (SIG). In these algorithms, the CDP broadcasts

CUAs, that consist all data object IDs that are updated during

the past seconds (where is a positive integer), every seconds.

The benefit of these algorithms is that an CDP does not

maintain any state information about its Mobile Node's

caches, and this makes the management of CDP database very

easy. But, there are many disadvantages with these algorithms.

The first problem is that they do not scale well to large

databases and/or fast updating data systems, because of

increased number of IR messages. The second one is that the

average access latency is usually longer than half of the

broadcast period. This is because all requests can be answered

only after the next IR. Lastly all cached data objects are

dropped in the case of the sleep time is longer than.

For handling the long sleep-wake up patterns, various

algorithms have been suggested. Going by example, in the bit-

sequence (BS) algorithm because of Jing, et al. [3], every

cache entry is deleted only when half or more of the data

entries in the cache have been nullified. But, the model needs

the broadcast of a very large number of IR messages

compared to that of SSUM and AT schemes. Wu et al. [5]

suggested an uplink validation check scheme which will be

able to deal with long sleep-wake up themes better than

SSUM and AT. However the problem with this approach is

that this approach needs more uplink bandwidth and cannot

deal with long sleep-wake up patterns.

A very few stateful cache consistency maintenance algorithms

have been suggested for wireless mobile computing

environments. Khaleel Mershad et al[12] proposed a smart

server update mechanism for Maintaining Cache Consistency

in Mobile Environments. Though the solution is impressive

when compared to most frequently cited solutions in earlier

literature, but still it is probabilistic to make available data in

cache for nodes,.

In AS, an CDP records all retrieved data object for each and

every Mobile Node. After an Mobile Node first gets back a

data object after it wakes up, the CDP sends an IR, depending

on the Mobile Node's cache content record and sleep-wake up

time, to that respective Mobile Node. When an CDP gets an

update from the original server for all the recorded data

objects, it broadcasts that data object's IR to Mobile Nodes.

The benefit of the AS scheme is that the CDP averts needless

broadcast of CUAs to Mobile Nodes and also it can deal with

any sleep-wake-up pattern without losing any valid data ob-

ject. But, for maintaining each Mobile Node's cache state in

the CDP, the CDP must and should record all cached data

objects for each and every Mobile Node. So an Mobile Node

can be able to download data objects which it requested using

the uplink. This renders the channel utility inefficient and

sensitive to the number of Mobile Nodes.

3. SCALABLE DISTRIBUTED CACHE INDEXING FOR

CACHE CONSISTENCY (SDCI)

In this particular paper, we suggest a new Scalable distributed

cache indexing for Cache Consistency (SDCI) for maintaining

Mobile Node's cache consistency that is used in a read-only

system. SDCI is a hybrid of stateless and stateful procedures

which means that it maintains minimum state information.

But, unlike the stateful algorithm [12] that makes the CDP to

remember all data objects for all Mobile Node's cache, SDCI

needs only the CDP to recognize which data objects in its

database might be valid in Mobile Node's caches, making the

management of the CDP database much simpler than usual.

However, unlike prevailing synchronous stateless processes,

SDCI does not need periodic broadcast of CUAs, decreasing

IR messages that are required to be sent through the downlink

broadcast channel. Also, by appending uncertain and Local-

Cache states in Mobile Node's caches, SDCI makes easy

handling of arbitrary sleep-wake-up patterns and mobility, and

good cooperation among all Mobile Nodes that greatly

enhances broadcast channel efficiency. The subsections that

follow explain the suggested algorithm in detail.

A. Data Structures and Message Formats

For each and every data object having distinct identifier x , the

data structure for CDP and Mobile Node's cache are as given

below:

• (, ,)x x xd t f Data entry format for each data object in

CDP. Here xd , is the data object, xt is the last update time

for the data object and xf is a flag bit.

• (, ,)x x xd ts s :data entry format in an Mobile Node's

cache. Here xd is defined above, xts is the time stamp

showing the last updated time for the cached data object

xd dx, and xs is a two-bit flag recognizing 4 data entry

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 430

states: stable , uncertain , waiting And

LC standard respectively.

B. Mobile Node Cache Management

As this paper is mainly about the cache consistency mainte-

nance design, we utilize the LRU (Least Recently Used) based

replacement algorithm for managing Mobile Node's caches.

The effect of the cache replacement algorithms on SDCI is

studied later.

In LRU based replacement scheme, a data object that is

recently cached or a cached data object that gets a hit is

relocated to the head of the cache list. Whenever a data object

requires to be cached and the cache is full, data entries with sx
 2 from the tail are removed for creating enough space in

order to accommodate this new data object (the data object

with sx = 2 must be kept so that some requests are waiting for

its confirmation).

Any refreshed data objects from uncertain state or Local-

Cache state are moved to their original location and again, if

required, sufficient data entries from the tail are deleted.

C. Algorithm Description

We have given 2 procedures, i.e., CDP-trans () and Mobile

Node transactions, for the SDCI. The CDP continuously

performs the CDP-trans () and each Mobile Node

continuously performs the Mobile Node Transactions method

during its awake period.

The pseudo codes for CDP-trans () and Mobile Node

Transactions are as shown in Figures 1 and 2.

CDP-trans (()request x) {

()sts findStatus x

()if sts available begin

Broadcast , ,x xd t x

rValue available

(0)xif f

1xf

End;

()if sts uncertain

()x xif t ts

Broadcast (,)xx t

rValue confirm

else

Broadcast , ,x xd t x

rValue available

(0)xif f

1xf

()if sts update

Update the database entry (

'&& 'x x x xd d t t)

(1)xif f begin

Broadcast

()cua x

0xf

End;

Fig1:CDP-trans

D. Cache Consistency Maintenance

We explain in detail how SDCI sustains consistency between

an CDP database and Mobile Node caches. We presume that

the consistency between the CDP database and original

servers is sustained using wired network consistency

algorithms [9], [10].

For each and every cached data object, SDCI utilizes a single

flag bit xf
, for maintaining the consistency between the CDP

and Mobile Node caches. Whenever xd
 is recovered by an

Mobile Node, fx is set, showing that a valid copy of xd
 may

be ready to use in an Mobile Node's cache. Whenever the

CDP gets an updated xd
, it broadcasts and resets. This action

shows that there are no valid copies of xd
 in any Mobile

Node's caches. Also, further updates do not necessitate

broadcast of IR(x).

The flag is set again whenever the CDP services restoration

(comprising request and confirmation) for xd
 by an Mobile

Node.

In mobile environments, an Mobile Node's cache is in either

of two states: (i) awake or (ii) sleep. In the case of an Mobile

Node is awake at the time of IR(x) broadcast, the xd
 copy is

invalidated and an ID-only

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 431

mnRequestHandler(

()xreq d) {

()xsts reqStatus d

()if sts stable

Update cache list

Return

()xcached d

()if sts uncertain

Add x to waiting

list

Set 2xs

Update cache list

head with this entry

Return

(,)xuncertain x ts

()if sts unavailble

send request to

CDP

add x to query

waiting list

}

mnResponseHandler(

()xresp d){

()sts status x

()if sts available

Remove x from cache

Add x to cache head

return xd

()if sts waiting

//ELSE IF (entry x is ID-

only entry in cache)

mnRequestHandler(

()xreq d

 ()elseif sts uncertain

()x xif ts t

0

x x

x

ts t

s

mnRequestHandler(

()xreq d

else

0xs

}

mnCacheUpdateAlertHand

ler(()cua x){

(())msg reqStatus cua x

()xsts reqStatus d

(()&&(||))if msg update sts available sts uncertain

begin

3xs

()xremove d

end

}

() &&() &&()x xelseif msg confirm sts uncertain ts t

 0xs

()&&()elseif msg confirm sts waiting

 Return xd

else

()xdelete d

3xs

}

Fig2: Mobile Node Transactions

Entry is sustained by the Mobile Node. The data objects of a

Mobile Node in the sleep state are not affected until it wakes

up. Whenever an Mobile Node wakes up, it sets all cached

valid data objects (including) into the uncertain state. As a

result sleeping Mobile Nodes and the cached objects are not

affected by missing broadcast.

E. Efficiency and Cooperation

As stated earlier, a good cache consistency maintenance

algorithm must be able to get scaled and also must be efficient

in terms of the database size and the number of Mobile Nodes.

SDCI are able to handle large and fast updating data systems

as the CDP has some knowledge of Mobile Node's cache.

Only data entries that have standard bits set result in the

broadcast of IBs whenever data objects get updated. As a

result, the IR broadcast frequency is the minimum of the

uplink query/confirmation frequency and the data object

update frequency. Similarly, the broadcast channel bandwidth

consumption for CUAs is minimized.

mnWakeupHandler(){

(0)

1

foreach s

s

}

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 432

In addition to IR traffic, all other traffic in SDCI is also mini-

mized because of the strong cooperation among the Mobile

Node's caches. Specifically, this is because of the introduction

of the uncertain state and the Local-Cache state for the Mobile

Node's caches. The recovery of a data object, xd
 from the

CDP allotted by any given Mobile Node makes the x entries in

the uncertain or Local-Cache state in all the awake Mobile

Node's caches to a valid state. Also, a single uplink con-

firmation for in the uncertain state makes the entries in

uncertain state for all the awake Mobile Node's caches to

either valid or Local-Cache state. The addition of the uncertain

state also helps an Mobile Node's cache in order to keep all the

valid data objects after it wakes up from duration of sleep

time. In contrast, for SSUM algorithms, every invalidated

data object is completely removed from the Mobile Node's

cache. This helps in bringing little cooperation among the

Mobile Nodes, creating a dramatic increase of traffic volume

between the CDP and the Mobile Nodes as the number of

Mobile Nodes increases (see in Section V). Even though it

improves the scalability of SSUM by holding the invalid data

objects, it decreases the cache efficiency by keeping the

invalid data objects, instead of IDs as is the case in our SDCI

approach, in the Mobile Node's cache.

In variance with the AS scheme that needs O(MN) buffer

space in the CDP for keeping all the Mobile Node's cache

state, our procedure only requires one bit per data object in the

CDP showing that if the broadcast is necessary whenever the

data object is updated. Also, the added management overhead

is minimal as it needs only a single bit check and set/reset.

F. Mobility

Generally, synchronous stateless procedures handle Mobile

Node's mobility by presuming that all CDPs broadcast the

same CUAs .But, in the case of the number of CDPs being

large, those systems cannot be scaled. There is no other

alternate way for handling the Mobile Node's mobility in the

literature. In our approach, an Mobile Node roaming into a

new cell is considered as if it just woke up from the sleep

state, i.e., every valid data object is set to the uncertain state.

The consistency is guaranteed by using this approach and

every valid data object is retained. Moreover, SDCI is simple

because it is transparent to the CDPs engaged. In this

approach, the roaming effect is nothing but the addition of a

new sleep-wake-up pattern and should not have any

substantial impact on the overall performance. This paper

emulates the roaming effect by a sleep-wake-up pattern.

4. PERFORMANCE EVALUATION BY

SIMULATION

A. simulation setup

We take into consideration a single cell system with one CDP

database and multiple Mobile Nodes having identical cache

size. The request process for each Mobile Node is presumed to

be Poisson distributed and the update processes for data

objects are also Poisson distributed. Moreover, the sleep-

wake-up process is made into a model having a two-state

Markov chain.

In our simulation, we utilized a single channel with bandwidth

CB for both downlink as well as uplink data transmission.

Every message is queued and serviced based on a first-come-

first- serve basis. Every request is neglected whenever an

Mobile Node is in the sleep state. Error recovering cost and

software overhead are also neglected. Whenever a requested

data object is available at an Mobile Node's local cache, the

delay AQD is counted as 0. A Zip f—like distribution Mobile

Node access pattern [11] is utilized in the simulation.

The following subsections give a comprehensive comparison

of the suggested SDCI with SSUM algorithms by means of

metrics and for 3 distinct cases. The average access delay is a

significant measurement of system performance, a shorter

AQD, a better performance. The uplink per query is associated

to cache hit ratio. Whenever an Mobile Node receives a query,

in the case of the queried data object being valid in the cache,

a cache hit is counted, and no uplink is required for the query.

So, higher hit ratio, fewer uplink per query.

B. Case Studies

Three cases are given here. In each case, ub
=64 and bd = 64

for both SDCI, and bu = 10 and bd = 10 for SSUM[12].

The bandwidth is set as CB=10000bps. Cache size is in units

of the number of data objects and the maximum number of ID-

only entries is also set to in the first two cases. Data object

sizes and data object update frequencies. They will be

provided later in detail and @ is used to denote them in Table

II. Each and every case study correlates to a parameter effect

that is shown by * in the column.

Case 1: Effect of CDP Database Size

Table 1 shows the simulation results of AQD and UPQS for

two algorithms with distinct database sizes.

From Table III, we see that SDCI outperforms the SSUM [12]

on both performance metrics for distinct database sizes (N).

Whenever the database size reaches approx 13000, AQD for

SSUM is over 160 sec. But in case of SDCI, we can observe a

slow increase of the performance metrics as increases all the

way up to approx N value 13000.

In brief, the performances of SDCI are insensitive to the

database size N and so it can be used to scale large database

sizes. But, the performance of SSUM is responsive to the

database size, specifically in terms of the delay

performance, and so SSUM cannot be used to scale large

database sizes.

Case 2: Effect of Data Update Rate

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 433

Table IV shows the simulation results of the effect of update

interval ut . Moreover, it is observed SDCI outperforms SSUM

[12] for all these performance metrics. As assumed, as ut

declines, both performance metrics increase for all these

algorithms. But, SDCI show slower rates of increase

compared to SSUM for all the metrics. Particularly, whenever

ut is declined to 10 sec, the delay performance of SSUM is

very large (about 50 sec) beyond acceptance. At this update

interval, SDCI gets considerable delay performance gain over

SSUM. For uplink per query, SDCI outperforms SSUM in the

range of 5 to 30 percent.

Case 3: Effect of the Number of Mobile Nodes. In this case

study, we take into consideration a system identical to a real

situation. We presume that a cell has 5 distinct Mobile Node

query patterns as

1

(10 50*)i

and s=0.9-0.2*I and Ts =

500 * (i + 1) sec with i = 0,1,2,3 and 4.

Each and every query pattern group has M/5 Mobile Nodes in

it. We presume the query patterns for all the groups follow Zip

f-like (z=1) distribution. The access popularity ranking for the

neighboring groups is moved by 10, i.e., group I has declining

popularity from data object 1 to 1000 and group 2from 11to

1000 and then from 1to 10, and so on.

We also presume that there are 5 types of data objects in the

CDP as:
500*(1)pb i

 and
110 seci

uT
with i=

0,1,2,3 and 4

Table1: Average Query Delay per no of records

 100 200 400 80

0

1600 3200 640

0

1280

0

SD

CI

0.16

5

0.29

8

0.42

9

0.5

64

0.67

9

0.78

4

0.8

96

1.01

5

SSU

M

12.3

14

12.9

74

13.8

62

14.

43

9

14.9

94

15.4

94

17.

465

161.

977

per no of transactions

 10 40 160 640 2560 10240

SDCI 3.004 1.6 0.934 0.667 0.59

6

0.573

SSUM 50.006 36.9 17.139 15.488 15.0

96

14.879

Table 2: Uplink per query per no of records

 100 200 400 800 1600 3200 6400 12800

SD

CI

0.2

34

0.3

34

0.4

28

0.495 0.55

8

0.59

9

0.64

8

0.673

SS 0.7 0.7 0.8 0.861 0.89 0.89 0.92 0.924

UM 56 93 32 3 5 2

per no of transactions

(a) Per no of records

(b) Per no of transactions

Fig 3: Line chart representation of Average query delay

comparison between SDCI and SSUM

(a)Per no of records

 10 40 160 640 2560 10240

SDCI 0.838 0.717 0.584 0.509 0.513 0.520

SSUM 0.999 0.986 0.956 0.893 0.839 0.825

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 434

(b)Per no of transactions

Fig 4: Line chart representation of uplink per query

comparison between SDCI and SSUM

Each and every data type group has N/5 data objects.

The parameter values that are selected above depend on the

understanding that a highly frequent query of Mobile Node

usually implies a shorter awake time and in the case of a faster

updated data object generally has a smaller size. The cache

size is 150 Kbytes. The maximum number of data ID-only

entries which can be put in each Mobile Node cache is set at

100.

Figures 3 and 4 describe AQD and uplink per query

comparison between SDCI and SSUM, respectively. As we

can observe, SDCI scales much better compared to SSUM in

terms of both performance metrics.

CONCLUSIONS AND FUTURE WORK

In this paper, we suggested a Scalable distributed cache

indexing for Cache Consistency (SDCI) for mobile

environments. 3 key features of SDCI are: (i) use of standard

bits at CDP and Mobile Node's caches to sustain cache

consistency; (ii) utilization of a Local-Cache state for each and

every entry in Mobile Node's cache after a data object

becomes nullified; (iii) all acceptable data entries are set to the

uncertain state after an Mobile Node wakes up. These main

features make the suggested algorithm highly scalable and

efficient. To be straight forward, SDCI is a hybrid of stateful

and stateless algorithms. But, unlike stateful algorithms, SDCI

sustains one flag bit for each and every data object in CDP to

ascertain whenever to broadcast CUAs. On the flipside, unlike

prevailing synchronous stateless procedures, SDCI does not

need periodic broadcast of CUAs. So SDCI largely declines

IR messages that are required to be sent through the downlink

broadcast channel. SDCI gets the positive features from both

stateful as well as stateless algorithms. Comprehensive

simulation results reveal that the suggested algorithm higher

performance compared to SSUM scheme. Future work will

comprise studying the effect of distinct replacement

algorithms on the performance of SDCI. Future study will also

delve into the CDP cache management algorithm and the

effective transfer cached data objects among CDPs when

Mobile Nodes roam among distinct CDPs.

REFERENCES

[1]G. Forman and J. Zahorjan, "The challenge of mobile

computing", IEEE Computer, 27(6), pp38-47, April 1994.

[2]D. Barbara and T. Imielinksi," Sleeper and Workaholics:

caching strat¬egy in mobile environments ", In Proceedings of

the ACM SIGMOD Conference on Management of Data, pp1-

12, 1994.

[3]J. Jing, A. Elmagarmid, A. Heal, and R. Alonso. "Bit-

sequences: an adaptive cache invalidation method in mobile

client/server environ¬ments", Mobile Networks and

Applications, pp 115-127, 1997.

[4]Q. Hu and D.K. Lee, "Cache algorithms based on adaptive

invalidation reports for mobile environments", Cluster

Computing, pp 39-50, 1998.

[5]K.L. Wu, P.S. Yu and M.S. Chen, "Energy-efficient

caching for wire¬less mobile computing", In 20th

International Conference on Data En¬gineering, pp 336-345,

1996

[6]G. Cao, "A scalable low-latency cache invalidation strategy

for mobile environments", ACM Intl. Conf. on Computing and

Networking (Mo- bicom), pp200-209, August, 2001

[7]K. Tan, J. Cai and B. ooi, "An evaluation of cache

invalidation strate¬gies in wireless environments", IEEE

Trans. on Parallel and Dis¬tributed System, 12(8), pp789-897,

2001

[8]A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani," A

strategy to manage cache consistency in a distributed mobile

wireless environ¬ment", IEEE Trans. on Parallel and

Distributed System, 12(7), pp 686¬700, 2001.

[9]H. Yu, L. Breslau and S. Shenker, "A scalable web cache

consistency architecture", In Proceedings ofthe ACM

SIGCOMM, August, 1999.

[10]J. Gwertzman and M. Seltzer, "World-Wide Web cache

consistency", In Proceedings of The USENIX Symposium on

Internet Technologies and Systems, December, 1997.

[11]L. Breslau, P. Cao, J. Fan, G. Phillips and S. Shenker,

"Web caching and Zipf-like distributions: evidence and

implications, ", Proceedings of IEEE INFOCOM'99,pp126-

134, 1999

[12]Khaleel Mershad and Hassan Artail, Senior Member,

IEEE; "SSUM: Smart Server Update Mechanism for

Maintaining Cache Consistency in Mobile Environments";

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.

9, NO. 6, JUNE 2010

[13] A. Elmagarmid, J. Jing, A. Helal, and C. Lee, “Scalable

Cache Invalidation Algorithms for Mobile Data Access,”

IEEE Trans. Knowledge and Data Eng., vol. 15, no. 6, pp.

1498-1511, Nov. 2003.

[14] H. Jin, J. Cao, and S. Feng, “A Selective Push Algorithm

for Cooperative Cache Consistency Maintenance over

MANETs,” Proc. Third IFIP Int’l Conf. Embedded and

Ubiquitous Computing, Dec. 2007.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 02 Issue: 04 | Apr-2013, Available @ http://www.ijret.org 435

[15] IEEE Standard 802.11, Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specification,

IEEE, 1999.

[16] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-

Sequences: An Adaptive Cache Invalidation Method in

Mobile Client/Server Environments,” Mobile Networks and

Applications, vol. 15, no. 2, pp. 115-127, 1997.

[17] J. Jung, A.W. Berger, and H. Balakrishnan, “Modeling

TTL-Based Internet Caches,” Proc. IEEE INFOCOM, Mar.

2003.

[18] X. Kai and Y. Lu, “Maintain Cache Consistency in

Mobile Database Using Dynamical Periodical Broadcasting

Strategy,” Proc. Second Int’l Conf. Machine Learning and

Cybernetics, pp. 2389- 2393, 2003.

[19] B. Krishnamurthy and C.E. Wills, “Piggyback Server

Invalidation for Proxy Cache Coherency,” Proc. Seventh

World Wide Web (WWW) Conf., Apr. 1998.

[20] B. Krishnamurthy and C.E. Wills, “Study of Piggyback

Cache Validation for Proxy Caches in the World Wide Web,”

Proc. USENIX Symp. Internet Technologies and Systems,

Dec. 1997.

[21] D. Li, P. Cao, and M. Dahlin, “WCIP: Web Cache

Invalidation Protocol,” IETF Internet Draft,

http://tools.ietf.org/html/draftdanli- wrec-wcip-01, Mar. 2001.

[22] W. Li, E. Chan, Y. Wang, and D. Chen, “Cache

Invalidation Strategies for Mobile Ad Hoc Networks,” Proc.

Int’l Conf. Parallel Processing, Sept. 2007.

[23] S. Lim, W.-C. Lee, G. Cao, and C.R. Das, “Performance

Comparison of Cache Invalidation Strategies for Internet-

Based Mobile-Ad Hoc Networks,” Proc. IEEE Int’l Conf.

Mobile Ad-Hoc and Sensor Systems, pp. 104-113, Oct. 2004.

[24] M.N. Lima, A.L. dos Santos, and G. Pujolle, “A Survey

of Survivability in Mobile Ad Hoc Networks,” IEEE Comm.

Surveys and Tutorials, vol. 11, no. 1, pp. 66-77, First Quarter

2009.

[25] H. Maalouf and M. Gurcan, “Minimisation of the Update

Response Time in a Distributed Database System,”

Performance Evaluation, vol. 50, no. 4, pp. 245-266, 2002.

[26] P. Papadimitratos and Z.J. Haas, “Secure Data

Transmission in Mobile Ad Hoc Networks,” Proc. ACM

Workshop Wireless Security (WiSe ’03), pp. 41-50, 2003.

[27] J.P. Sheu, C.M. Chao, and C.W. Sun, “A Clock

Synchronization Algorithm for Multi-Hop Wireless Ad Hoc

Networks,” Proc. 24th Int’l Conf. Distributed Computing

Systems, pp. 574-581, 2004.

[28] W. Stallings, Cryptography and Network Security, fourth

ed. Prentice Hall, 2006.

[29] D. Wessels, “Squid Internet Object Cache,” http://www.

squid-cache.org, Aug. 1998.

[30] J. Xu, X. Tang, and D. Lee, “Performance Analysis of

Location- Dependent Cache Invalidation Schemes for Mobile

Environments,” IEEE Trans. Knowledge and Data Eng., vol.

15, no. 2, pp. 474-488, Feb. 2003.

[31] L. Yin, G. Cao, and Y. Cai, “A Generalized Target

Driven Cache Replacement Policy for Mobile Environments,”

Proc. Int’l Symp. Applications and the Internet (SAINT ’03),

Jan. 2003.

