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Abstract 
In this paper modeling of an inverted pendulum is done using Euler – Lagrange energy equation for stabilization of the pendulum. The 

controller gain is evaluated through state feedback and Linear Quadratic optimal regulator controller techniques and also the results 

for both the controller are compared. The SFB controller is designed by Pole-Placement technique. An advantage of Quadratic 

Control method over the pole-placement techniques is that the former provides a systematic way of computing the state feedback 

control gain matrix.LQR controller is designed by the selection on choosing. The proposed system extends classical inverted 

pendulum by incorporating two moving masses. The motion of two masses that slide along the horizontal plane is controllable .The 

results of computer simulation for the system with Linear Quardatic Regulator (LQR) & State Feedback Controllers are shown in 

section 6. 
 

Keyword-Inverted pendulum, Mathematical modeling Linear-quadratic regulator,  Response, State Feedback controller, 
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------------------------------------------------------------------*****------------------------------------------------------------------------- 

1. INTRODUCTION 

One of the most celebrated and well – publicized problems in 

control system is Inverted Pendulum[3,4] or broom balancer 

problem. This is an unstable system[1,17]] that may model a 

rocket before launch. Almost all known and novel control 

techniques have been tested on IP problem.This  is a classical 

problem in dynamics and control theory[2,5] and is widely 

used as a benchmark[16] for testing control algorithms(PID 

controllers, Linear Quadratic Regulator (LQR), neural 

networks, fuzzy logic control, genetic algorithms, etc)[7,8].The 

inverted pendulum is unstable[11] in the sense that it may fall 

over any time in any direction unless a suitable control force is 

applied. The control objective of the inverted pendulum is to 

swing up[4] the pendulum hinged on the moving cart by a 

linear motor[12] from stable position (vertically down state) to 

the  zero state(vertically upward state)[6,9] and to keep the 

pendulum in vertically upward state in spite of the 

disturbance[10,13].It is highly nonlinear[12,15], but it can be 

easily be controlled by using linear controllers in an almost 

vertical position[18]. If the system is controllable or at leasr 

stabilizable, this method gives excellent stability margins. The 

guaranteed margins in LQR design are 60 degree phase margin, 

infinite gain margin ,and -6dB gain reduction margin. 

 

2. MATHEMATICAL MODEL OF PHYSICAL 

SYSTEM  

The inverted pendulum is a classical problem in dynamics and 

control theory and is widely used as a benchmark for testing 

control algorithms.  
 

  𝑥1 = 𝑥 + 𝑙 sin 𝜃 

 

 

 

 𝑦1 = 𝑙 cos 𝜃  𝜃         𝑚𝑔   𝑙   

      

 

 

         𝐹                              𝑀                                 𝑥 
 

 

 

 

 

Fig 1 : The Inverted Pendulum System 

 
Let the new ordinate of the centre of gravity of the pendulum 

be (x1, y1). 

 

Define the angle of the rod from the vertical (reference) line 

as θ and displacement of the cart as x. Also assume the force 

applied to the system is F , g be the acceleration due to gravity  

and l be the half length of the pendulum rod, v , and w be the 

translational and angular velocity of the cart and pendulum. 

The physical model of the system is shown in fig (1). 

Therefore, 

 

𝑥1 = 𝑥 + 𝑙 sin 𝜃 
𝑦1 = 𝑙 cos 𝜃 

𝑥1 = 𝑥 + 𝑙𝜃 cos 𝜃 

𝑦 1 = 𝑙𝜃 sin 𝜃 
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Let V1 be the resultant velocity of pendulum & cart, 

 

V1
2= x 1

2 + y1 
2  

=x 2 +2lx θ cos θ + l2θ 2   

 

Therefore kinetic energy of the pendulum, 

 

k1 =
1

2
mv2 +

1

2
Iω2 

=
1

2
m(x 2+2lxθ cos θ + mI2  θ 2) +

1

2
Iθ 2 

 

Kinetic energy of the of the cart, 

 

k2 =
1

2
Mx 2 

 

Now the Potential energy of the pendulum, 

 

P1=mgy1 = mgl cos θ 

 

Potential energy of the cart P2 = 0 

 

The Lagrangian of the entire system is given as, 

 

L =kinectic energy-potential energy 

L= 
1

2
(mx 2 +2mlx cos�+ml2θ 2+Mx 2)+ 

1

2
Iθ 2 ]-mglcos� 

 

The Euler- Lagrangian  equations are given by, 

 
d

dt
 
δL

δθ 
 −

δL

δθ
+ dθ = 0        and 

 

  
d

dt
 
δL

δx 
 −

δL

δx
+ bx = F 

 

Simplifying the above equations we get  

 

 I + ml2 θ  + ml cos θ x − mgl sin θ + dθ = 0 ………..(1) 

 

 M + m x  + ml cos θ θ  − ml sin θ θ 2  + bx = F ………(2) 

 

The above equation shows the dynamics of the entire system. 

In order to derive the linear differential equation modelling, we 

need to linearaize the non linear differtional equation obtained 

as above so far. For small angle deviation around the upright 

equilibrium (fig.2)  point assume  

 

 sin θ = θ, cos θ = 1, θ 2 = 0 
 

Using above relation we can write as, 

 

rθ +qx -kθ+d =0………..(3) 

px  + qθ  + bx = F …….(4) 

 

Where, (M + m)= p, mgl=k, ml=q, I + ml2= r 

Eq (3&4) is the linear differential equation modeling of the 

entire system. 

 

3. STATE SPACE MODELLING 

Let,θ=x1, θ =x2=x 1, θ =x 2=x 1 and, x = x3, x =x4=x 3, x =x 4=x 3 

From state space modeling, the system matrices are found in 

matrix from given below. 

 

A= 

0
4.0088

1
−0.047753952

0 0.0000000
0 0.0139155

0 0 0 1.0000000
0.116806166 0.0939155 0 0.0344200

  

 

And 

 

B= 

0
−0.27831

0
0.68842

     Y= 
1 0 0 0
0 0 1 0

  

𝑥1

𝑥2

𝑥3

𝑥4

   , Y be the output equation    

 
4. STATE FEEDBACK CONTROLLER DESIGN 

CONDITIONS: 

Our problem is to have a closed loop system having an 

overshoot of 10% and settling time of 1 sec. Since the 

overshoot  

 

MP=e−π ξ  1− ξ2
=0.1. 

 

Therefore, ξ = 0.591328 and wn=6.7644 rad/sec. The dominant 

poles are at=-4 ± j5.45531, the third and fourth pole are placed  

5 & 10 times deeper into the s-plane than the dominant poles. 

Hence the desired characteristics equation:- 

 

s4 + 68s3 +845.7604s2 +9625.6s + 36608.32 =0  

 

Let gain, k= [k1   k2   k3   k4] 

 

A – Bk= 

 
A – Bk=         0                  0                        1                         0      

                0                  0                        0                          1   

                      0                   0                        0                          1                            
                   - k1            0.2346-k2         6.8963-k3         -0.0765- k4                 
 

Closed loop characteristics equation: 

 

S4 +(0.0765-k4)s3 +(-6.8963 + k3)s2 +(-0.2346 +k2)s +k1 = 0 

 

Comparing all  the coefficient of above equation we found 

 

K 1 = [36608.32  9625.8346   852.6567   -67.9235] 
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Similarly if the poles are are placed  2 & 3 times and also  12 & 

14 times deeper into the s-plane than the dominant poles then 

we got the value of k 2 & k3 as, 

 

K 2= [123002.88  26263.2746  2823.8263  -111.9235]  

 

K 3= [4392.96  859.7346  308.6563  -27.9235]  

 

Where, K1, K2, K3 and K4 are gain vectors for different sets 

of desire poles. 

 

Table 1: Parameters of the system from feedback instrument 

.U.K. 

 

Parameter Value Unit 

Cart mass(𝑀) 1.206 Kilo gram 

Mass of the pendulum(𝑚) 0.2693 Kilo gram 

Half Length of 
pendulum(𝑙) 

0.1623 Meter 

Coefficient of frictional 
force(𝑏) 

0.05 Ns/m 

Pendulum damping 
coefficient(q) 

0.005 𝑀𝑚/rad 

Moment of inertia of 
pendulum(𝐼) 

0.099 𝑘𝑔/𝑚2 

Gravitation force(𝑔) 9.8 𝑚/𝑠2 

 

5. LQR DESIGN 

A system can be expressed in state variable form as 

 

x  = Ax + Bu 

 

with x(t)∈R N , u(t)∈ R N  . The initial condition is x(0) . We 

assume here that all the states are measurable and seek to find a 

state-variable feedback (SVFB) control 

 

 u = −Kx + v 

 

that gives desired closed-loop properties.  

The closed-loop system using this control becomes 

 

x = (A- BK) x+ Bv= Ac x+ Bv  

 

with Ac the closed-loop plant matrix and v the new command 

input. 

 

Ackermann's formula gives a SVFB K that places the poles of 

the closed-loop system at desired location . To design a SVFB 

that is optimal, we may define the performance index J as 

 

J =
1

2
 XT∞

0
 Q + KTRK Xdt   

We assume that input v(t) is equal to zero since our only 

concern here are the internal stability properties of the closed 

loop system. 

 

The objective in optimal design is to select the SVFB K that 

minimizes the performance index J. 

 

The two matrices Q (an n× n matrix) and R (an m × n matrix) 

are of appropriate dimension.  

 

One should select Q to be positive semi-definite and R to be 

positive definite. Since the plant is linear and the performance 

index is quadratic, the problem of determining the SVFB K to 

minimize J is called the Linear Quadratic Regulator (LQR).To 

find the optimal feedback  gain matrix K we proceed as 

follows. Suppose there exists a constant matrix P such that 

 
d

dt
 xT Px = −xT Q + KTRK X 

 

After some mathematical manipulation, the equation becomes, 

 

J = −
1

2
 

d

dt
 xTPx dt =

1

2

∞

0

xT 0 Px(0) 

 

Where, we assumed that the closed-loop system is stable so 

that XT  goes to zero as time t goes to infinity. Substituting the 

values we get, 

 

xT Px + xTPx + xTQx + xTKTRKx = 0 

 

xTAT
cPx + xTPAcx + xTQx + xTKTRKx = 0 

 

xT(Ac
TP + PAc + Q+KTRKx)x = 0 

 

It has been assumed that the external control v(t) is equal to 

zero. Now note that the last equation has to hold for every XT . 

Therefore, the term in brackets must be identically equal to 

zero. Thus, proceeding one sees that 

 

(A − BK)TP + P A − BK + Q + KTRK = 0 
 

ATP + PA + Q + KTRK − KTBTP − PBK = 0 
 

This is a matrix quadratic equation. Exactly as for the scalar 

case, one may complete the squares. Though this procedure is a 

bit complicated for matrices, suppose we select 

 

K = R−1BTP 
 

Then, there results 

 

ATP + PA + Q − PBR−BTP = 0 
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This result is of extreme importance in modern control theory. 

The above Equation is known as the algebraic Riccati equation 

(ARE).  It is a matrix quadratic equation that can be solved for 

the auxiliary matrix P given (A,B,Q,R).  

The design procedure for finding the LQR feedback K is: 

 

1. Select design parameter matrices Q and R 

2. Solve the algebraic Riccati equation for P 

3. Find the SVFB using K = 𝑅−1𝐵𝑇  𝑃 
 

6 SIMULATION & RESULTS 

6.1.a Response due to LQR   

 
 

Fig2:- LQR response 

 

Q=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 10] 

 

R=0.1000 

 

 
 

Fig3:- LQR response 

 

Q=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 10] 

 

R=0.033 

 

 
 

Fig4:- LQR response 

 

Q=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 10] 

 

R=0.044 

 

 
 

Fig5:- LQR response 

 

Q=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 10] 

 

R=0.088 
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Fig6:- LQR response 

 

Q=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 10] 

 

R=0.090 

 

6.2.a-Stabilisation of Angle of the Pendulum by State 

Feedback Controller with Initial Condition 

 
K 1 = [36608.32  9625.8346   852.6567   -67.9235] 

 

Fig7:- Response of state feedback controller considering initial 

condition  when poles are placed 5 & 10 times deeper into the 

s-plane. 

 

 
K 2= [123002.88  26263.2746  2823.8263  -111.9235] 

 

Fig8:- Response of state feedback controller considering initial 

condition when poles are placed 12 & 14 times deeper into the 

s-plane. 

 

 
K 3= [4392.96  859.7346  308.6563  -27.9235] 

 

Fig9:- Response of state feedback controller considering initial 

condition when poles are placed 2 & 3 times deeper into the s-

plane. 
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6.2.b-Step Response of the System by State Feedback 

Controller 

 
K 1 = [36608.32  9625.8346   852.6567   -67.9235] 

 

Fig10:- Response of Angle as output using state feedback 

controller 

 

 
K 2= [123002.88  26263.2746  2823.8263  -111.9235] 

 

Fig11:- Response of Angle as output using state feedback 

controller 

 

 
K 3= [4392.96  859.7346  308.6563  -27.923] 

 

Fig12:- Response of Angle as output using state feedback 

CONCLUSIONS 

Modeling of inverted pendulum shows that system is unstable 

with non-minimum phase zero.Results of applying state 

feedback  controllers show that the system can be stabilized. 

while LQR controller method is cumbersome because of 

selection of constants of controller. Constant of the controllers 

can be tuned by some soft computing techniques for better 

result.Fuzzy logic controller can be use in equation (1&2) 

would help finding out the solution of non-linear differential 

equations thus helping towards the design of non-linear 

controller. 
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