
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 516

VLSI DESIGN PROCESS FOR LOW POWER DESIGN METHODOLOGY

USING RECONFIGURABLE FPGA

R. Rajendra Prasad
1
, M. V. Subramanyam

2
,

K. Satya Prasad

3

1
Asso.professor of ECE Department, N.B.K.R.Institute of Science and Technology, Vidyanagar, S. P. S. R. Nellore ,

Andhra Pradesh, India. rajendra_831@yahoo.co.in, rechalabhi812@gmail.com
2
Principal and Prof ECE Department, Santhi Ram Engineering College, Nandyal, India, mvsraj@yahoo.com
3
Professor of ECE Department and Rector, JNTU Kakinada, Kakinada, India., prasad_kodati@yahoo.co.in

Abstract

Modern digital processing applications have an increasing demand for computational power while needing to preserve low power

dissipation and high flexibility. For many applications, the growth of algorithmic complexity is already faster than the growth of

computational power provided by discrete general-purpose processors. A typical approach to address this problem is the combination

of a processor core with dedicated accelerators. Since changes in standards or algorithms can change the demands on the

accelerators, an attractive alternative to highly customized VLSI macros is suggested with the usage of reconfigurable embedded

FPGAs (eFPGAs).

Keyword: embedded FPGA, Fast computing, Hybrid design.

--***--

1. INTRODUCTION

FPGAs are widely used as an attractive compromise between

highly efficient physically optimized VLSI designs and

software programmable processors. Due to their

reconfigurability, FPGAs are highly flexible and allow for

relatively short design cycles since no physical changes to the

underlying hardware have to be made in case of a redesign.

However, they offer lower physical implementation costs

compared to software programmable processors, as the

inherent parallelism of many algorithms can be exploited in

contrast to sequential processor architectures. As a result,

commercial FPGA-architectures have been optimized to suit a

wide variety of applications from network related and digital

signal processing to the realization of soft-core processors. For

an embedded FPGA used as configurable accelerator,

however, the requirements concerning the provided resources

are often well defined and much narrower than for discrete or

“general purpose” FPGAs. Hence, eFPGAs can be optimized

for a certain set of applications and thus achieve higher

efficiency in terms of power dissipation, area and speed. First

investigations on a reconfigurable ASIP with a reconfigurable

accelerator based on a parametrisable eFPGA-architecture

have shown significant improvements in energy- and area-

efficiency [5].

2. eFPGA-ARCHITECTURE

The eFPGA architecture presented here is based on a highly

parametrisable architecture template targeting an arithmetic-

oriented application domain. Some of them are described by a

single value (e.g. the number of LEs in a row and Column),

while others require a more complex definition (e.g. the

connectivity per switch point). In the following, the

architectural components and the according parameters are

discussed in detail. A typical characteristic of arithmetic data

paths is the organization in function slices and bit slices. A

function slice represents one of many consecutively processed

elementary functions (e.g. n-bit addition, n-bit XOR operation

etc.), while a bit slice represents all processing elements in the

same column corresponding to the same bit value (e.g. bit 0 of

two successive function slices).

Typical arithmetic data path scheme most communication

between function slices and bit slices is local, i.e. only

between direct neighbors. In addition, operands are typically

fed to the data path using a broadcast scheme. The eFPGA-

architecture reflects typical arithmetic data path schemes by

using two-dimensional clusters of logic elements with a

distributed interconnect rather than one-dimensional clusters

with a central connection box. The signals coming from the

connection box are distributed to the logic elements in rows

and columns according to the function slices and bit slices,

such that all logic elements in a row or column share the same

input signals using so-called broadcast lines. This reduces the

number of signals that need to be provided by the connection

box and hence reduces the significant overhead imposed by

the configurable connection boxes.

The size of the cluster can be varied in the horizontal and

vertical direction independently. Also, the number of

broadcast lines per row and column can be changed in designs

based on the template. Broadcast lines can be fed to the cluster

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 517

from all four directions, and in the same way the outputs of the

LEs at all four cluster borders can be fed to the connection

box. The actual connectivity can be any set of the four

possible data directions (north, east, south, west) for inputs

and outputs independently. Between adjacent clusters, feed

through stages are provided to use the broadcast lines of the

neighboring clusters as inputs for the current cluster, hence

creating virtually larger clusters by cascading several of them.

a) Logic elements

The local connectivity between the logic elements is provided

by dedicated routing blocks (DRB) located in the logic

element. Each DRB is a set of multiplexes used to connect

broadcast signals or local signals to the core logic of the logic

element. The actual connectivity can be defined in the

architecture template by stating all sources connected to the

DRBs with their offset to the actual LE. The functionality of

the core logic itself is specified by a list of elementary

Boolean functions that the LE can process (e.g. full addition,

gated full addition etc.). Registers can be inserted per logic

element or with a reduced density, e.g. every second LE-row.

Cluster broadcast line core logic dedicated routing block

(DRB) broadcast lines local Connections.

b) Configuration memories

To reduce the overhead of the memory cells (typically

SRAMs) used to store the configuration of the FPGAs logic

and routing resources, the present architecture template allows

for sharing the configuration bits and thus configuring several

adjacent elements identically. This scheme is applied to the

logic elements as well as to the interconnect resources, where

adjacent switch points or connection points can share a single

SRAM block. The degree of SRAM sharing can be adjusted in

the architecture template in reasonable limits.

c) Routing switch

The routing switch of an FPGA is a set of switch points those

are located at crossing points of horizontal and vertical routing

tracks. The number of switch points available as well as their

connectivity determines the flexibility of the complete routing

switch. It was shown that it is not necessary to provide a fully

populated routing switch to achieve a good amount of

flexibility [6]. The architecture template presented here is very

flexible concerning the definition of available routing

resources. The number of routing tracks in horizontal and

vertical direction can be chosen independently. Each switch

point is defined by its position in the matrix of crossing lines

as well as the connectivity inside the switch point. Different

switch points can have different flexibility. In addition, the

segmentation of the interconnect can be adjusted by assigning

each routing track a certain segment length, corresponding to

the number of routing switches that are bypassed before the

line connects to the next routing switch.

d) Connection box

Finally, the architecture template offers a highly flexible

description of the connection box similar to the routing switch

definition. Three types of routing channels are supported: fully

connected, periodic connectivity and unconnected. Fully

connected tracks offer full population of the connection box,

i.e. each track can connect to each according broadcast line of

a cluster. However, they have the highest implementation

costs. Unconnected tracks can be implemented for fast signal

routing, as the capacitive load of these wires can be kept very

low. Periodic tracks use a special connection type best suited

for arithmetic data paths, where signals on a bus are typically

ordered by the weight of their bits. Accordingly, periodic

routing channels have a window of connection points that

slides across the tracks with a given velocity. The connection

box defined in the architecture template can be composed of

any mix of tracks with different channel widths and sliding

window specifications.

3. PROPOSED SYSTEM DESIGN

As many of the architectural features in the presented eFPGA

are unique and not common in standard FPGAs, there is

currently no tool support available. Most research conducted

in the field of eFPGA-architectures is based on the VPR

design flow [7] which can only be used to model standard

island style FPGA-architectures with LUT-based logic

elements and a small choice of routing switch architectures.

Hence, an important goal of this work is the creation of a self-

contained design methodology to design application domain

specific eFPGAs and the according basic tool support.

Figure 1: design flow for the implementation of layout design

The architecture template described above was formulated as a

high level description using C language. Based on this

architecture description, three main steps are supported by the

design flow. First, a layout generator creates a VLSI-layout of

the specified eFPGA based on a small set of handcrafted,

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 518

physically optimized basic cells such as the multiplexes for the

DRB or the switch points of the routing switch. Several

studies concerning this part of the design flow have been

published before [8] [9]. While the first automatically

generated eFPGA-layouts still needed to be configured

manually (i.e. each SRAM cell had to be configured with the

proper value), an automatic bit stream generator supporting

the complete architecture template is currently under

construction. The configuration bit stream is used to conduct

net list simulations based on layout-extracted net lists. To

verify the functionality of the eFPGA-macro, a VHDL-

generator creates a functional description that can be

simulated using common simulation tools like ModelSim. The

output of the configuration is based on a net list that describes

the signal flow graph mapped to the eFPGA. Currently, the net

list description is still complex, as each logic element and each

routing resource has to be described here. However, for

arithmetic data paths this net list is highly regular which

reduces the effort to generate it manually. Currently, a very

time-consuming and error-prone work is the generation of the

configuration bits and the routing of signals between the logic

elements. The placement process is less complex due to the

regularity of the examples considered here i.e. arithmetic data

paths. Consequently, a future step will be the implementation

of a routing tool supporting the parametrisable architecture.

Similar approaches to automatic eFPGA design have been

proposed e.g. with GILES [10] or PYTHAGOR [11].

However, those design flows have significant constraints

regarding the FPGA-architectures (e.g. only island style

FPGAs are supported) and the physical implementation style.

As an example, using standard cell implementations (e.g.

proposed by PYTHAGOR) leads to unfavorable physical

implementation costs concerning area, performance and power

dissipation. The first results presented here are based on a

completely functional co design of a routing switch layout, the

according VHDL model and the configuration bit stream

based on a given net list.

 a) Layout generator
The layout generator is based on a prior work on Automated

VLSI-design of regular data paths [12]. This so-called data

path generator uses a textual description of a signal flow graph

(SFG) and a small set of hand designed layout cells to

generate a layout. Since the textual SFG description can be

parameterized, the data path generator allows for a very

flexible implementation process, e.g. when parameters like

word lengths are changed in the SFG. Starting from the C-

based high level description of the eFPGA architecture a data

path generator suited SFG description is automatically

generated. Due to the highly modular design style, the

eFPGA-macro can be ported to different CMOS-technologies

with small effort, since only few hand designed layout cells

are required. After the layout is generated, standard net list

extraction and simulation tools can be used to characterize the

eFPGA macro in terms of area, timing and power dissipation.

b) VHDL-generator

Based on the architecture description, a VHDL-model of the

eFPGA is created automatically. It incorporates the functional

description of the basic configurable elements like routing

switch points or logic elements and combines them according

to the architectural parameters. The VHDL-model of the

eFPGA is used to verify the functionality defined by the net

list using existing simulation tools. It is also useful to test the

eFPGA macro created by the layout generator for correctness

by co simulation of the layout extracted net list and the

functional VHDL model.

c) Configuration

To enable simulations of the eFPGA-macro (on functional as

well as on net list level), all configuration bits have to be set

properly. Due to the very large number of configuration bits, it

is necessary to have an automated way of creating the bit

stream from the mapped net list. Existing bit stream generators

like DAGGER [13] lack the Support for highly

parametrisable eFPGA architectures as the one described here.

The configuration elaborated as part of the design

methodology presented here creates configuration bit streams

based on the net list and the architecture specifications. It also

uses the information from the layout generator to determine

the actual position of all blocks to be configured in the macro.

The configuration bit stream is composed of elementary

configuration table entries that must be provided for the basic

eFPGA elements like routing switch points or logic elements.

The elementary tables can be created with small effort, as only

few bits are required to configure these basic elements. The bit

stream is then concatenated according to the position of the

elements in the overall macro.

4. DESIGN EXAMPLE

As a first step in verifying the proposed design Methodology,

routing switches generator comprising all elements of the

design flow was implemented. As an example, a routing

switch with 32 tracks both in horizontal and vertical direction

was specified in the according architecture description. Switch

points with different flexibility are provided as exemplary

basic components for the routing switch. As the C based

description is on an abstract level, the architecture

specification for the complete routing switch can be created

within few minutesThree global parameters describe the

channel widths and the use of configuration sharing . Each

switch point is defined by a set of potential signal routes

according to their input and output directions (north, east,

south, west). From the flexibility required by each switch

point, the routing switch generator extracts a set of basic

layout cells that need to be designed for the VLSI-

implementation. The design of the according switch point

macros and the SRAM-cell required for the configuration

storage takes some hours for a skilled designer.The layout

generator automatically determines the optimum placement of

the basic cells for a given aspect ratio of the routing switch. It

also calculates the optimum aspect ratios of the configuration

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 519

blocks that are required per set of switch points sharing the

same configuration. To analyses the influence of different

parameters on the area, timing and power dissipation can be

conducted very quickly. A simple net list describing the

connections to be provided by the routing switch was used

to automatically generate the configuration bit stream with

more than 200 bits and the test bench for ModelSim

(functional simulation) and Xilinx (Realization). The backend

tool for the analysis is developed for an eFPGA application

and is processed for system level implementation.

Figure 2: Simulation model for designing board level

implementation using proposed analytical tool

A conventional application to such a design is carried out

using HDL simulator and xilinx synthesizer tool to evaluate

the feasibility of the flow of implementations for the suggested

tool.

Figure 3: timing simulation observation for a coding system

using HDL timing simulator

Figure 4: timing simulation observation for a decoding system

using HDL timing simulator

Figure 5: physical layout obtained for a

developed simulation model using xilinx synthesizer

Design static’s obtained fro the designed HDL definition.

Design Statistics

IOs : 6

Cell Usage :

BELS : 1041

Macro Statistics

Registers : 156

Maximum operating Frequency: 102.008MHz

CONCLUSIONS

The design methodology presented in this paper is an

important step for the evaluation of embedded FPGAs that are

optimized for a certain application domain. By using a

common, highly flexible architecture template, the eFPGA

architecture can be tailored to a given application domain

systematically. The self-contained design methodology

presented here enables the VLSI-design as well as basic tools

for verification and simulation. Hence, the complexity of

mapping exemplary data paths to the eFPGA is reduced

significantly compared to previous work. Using the simulation

results based on actual VLSI layouts of the eFPGA, a high-

level model of the architecture is currently evolving that

allows for a systematic analysis of the dependencies between

eFPGA architecture, mapped data paths and the according

efficiency.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 520

REFERENCES

[1] J. Hauser, “Integrated Circuits for Next Generation

Wireless Systems”, Proceedings of the European Solid- State

Circuits Conference (ESSCIRC) 2001, pp. 26-29

[2] Stretch S6000, http://www.stretchinc.com

[3] MENTA eFPGA-augmented RISC CPUs (website),

http://www.menta.fr/efpga_cpu.html

[4] A. Ye and J. Rose, “Using Bus-Based Connections to

Improve Field-Programmable Gate Array Density

Implementing Data path Circuits”,IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 14, No. 5, pp.

462-473, May 2006.

[5] T. von Sydow, M. Korb, B. Neumann, H. Blume and T. G.

Noll, “Modeling and Quantitative Analysis of Coupling

Mechanisms of Programmable Processor Cores and

Arithmetic Oriented eFPGA-macros”, in Proc. Reconfigurable

Computing and FPGA's, pp. 252-261, 2006.

[6] G. Lemieux and D. Lewis, “Design of Interconnection

Networks for Programmable Logic” Kluwer Academic

Publishers, 2004.

[7] V. Betz, J. Rose and A. Marquardt, “Architecture and

CAD for Deep-Sub micron FPGAs” in Kluwer International

Series in Engineering and Computer Science, 1999.

[8] T. von Sydow, B. Neumann, H. Blume and T. G. Noll,

“Quantitative Analysis of embedded FPGA Architectures for

Arithmetic”, in Proc. Application Specific Systems,

Architectures and Processors Conference ,pp. 125-131, 2006.

[9] B. Neumann, T. von Sydow, H. Blume and T. G. Noll,

“Design and quantitative analysis of parametrisable eFPGA-

architectures for arithmetic“ in Advances in Radio Science,

Vol. 4, pp. 251-259, 2006.

[10] I. Kuon, A. Egier and J. Rose, “Design, Layout and

Verification of an FPGA using Automated Tools”, in Proc.

2005 ACM/SIGDA 13th international symposium on Field

programmable gate arrays, pp. 215–226, 2005.

[11] A. Danilin, M. Bennebroek and S. Sawitzki, “A novel

toolset for the development of FPGA-like reconfigurable

logic”, in Proc. FPL 2005, pp. 640-643, 2005.

[12] O. Weiss, M. Gansen and T. G. Noll, “A flexible

Datapath Generator for Physical Oriented Design” in Proc.

European Solid-State Circuits Conference, pp. 408-411, 2001.

[13] K. Siozios et. al, “DAGGER: A Novel Generic

Methodology for FPGA Bitstream Generation and its Software

Tool Implementation”, in Proc. Parallel and Distributed

Processing Symposium 2005,p.p. 165b, 2005.

