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Abstract 
Single and double byte errors are most common errors in memory systems. With the advancement of technologies, more information 

bytes can be send over a transmission channel, but this increases the probability of more errors. Here we propose a methodology for 

detecting and correcting N-byte errors in the information bytes based on cellular automata (CA) concept. Cellular automata already 

accepted as an attractive structure for error detecting and correcting codes. In this paper, highly efficient, reliable and less complex 

cellular automata based N-byte error correcting encoder and decoder has been proposed. The design is capable of adding 2N check 

bytes corresponding to N information bytes at the encoder, which are used at the decoder section to detect and correct the byte errors.  
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1. INTRODUCTION 

During transmission of information bytes, it may be possible 

that information signal is corrupted by noise, which leads to 

change in information signal. It is very important to detect the 

errors in the information bytes and correct them. Various 

coding techniques have  been used for error detecting and 

correcting. Error correcting codes have been used to enhance 

system reliability and data integrity. The basic concept is to 

add check bytes or redundancy to the information bytes at the 

encoder so that decoder can recover the information bytes from 

the received  block possibly corrupted by the channel noise.  

Reed -Solomon (RS) codes are most commonly  used codes for 

error correction because these codes can detect both random as 

well as burst errors. Reed-Solomon codes were invented in 

1960 by Irving S. Reed and Gustave Solomon, at the MIT 

Lincoln Laboratory. Reed-Solomon codes are used in many 

applications like wireless communication, satellite 

communications, high speed modems and storage devices like 

CD, DVD. For example RS (28, 24) and RS (32, 28) is 

popularily used for multistorage CD. In this four check bytes 

are added to the information bytes, which detects the two byte 

errors. Complexity of RS encoder and decoder increases with 

the error correcting capability of the codes.  A general 

decoding scheme for RS decoder based upon pipelined degree 

computationless modified Euclidean algorithm is found in [1]. 

In [1], a high speed pipelined architecture was proposed with 

the aim of reducing hardware complexity  because of absence 

of degree computation circuit and improving the clock 

frequency in RS decoders. However conventional RS decoders 

[2]-[4] induce relatively huge hardware complexity. A system 

designer always prefer to have simple and regular structure for 

reliable high speed operations of the circuit. It has been found 

that these parameters are supported by local neighbourhood 

cellular automata (CA). CA based byte error correcting code 

has been proposed in [5]. Till now single, double and atmost 

three bytes errors are corrected [5]. In our research paper, a 

methodology for detecting and correcting N-byte errors based 

upon cellular automata has been proposed. Whatever will be 

the value of N, system will detect and correct the errors in the 

information bytes. A logic has been generated, which detects 

and corrects the errors. 

 

2. PRELIMINARIES 

A. CA Preliminaries 

CA is an array of cells, where each cell is in any one of the 

permissible states. At each discrete time step, the evolution of 

the cell depends on the combination logic which is function of 

the present state of the cell itself and states of the neighbouring 

cells. For two state three neighbourhood, the evolution of the 

ith cell can be represented as a function of the present states of 

( 1)i th , ith  and ( 1)i th cells as: 

1 1( 1) { ( ), ( ), ( )}i i i ix t f x t x t x t   where f represents the 

combinational logic. For a two state three cellular automata 

there are 2
3
 that is, 8 distinct neighbourhood configurations and 

2
8
 that is, 256 distinct next state functions. The CA 

characterized by a rule known as rule 90, specifies an evolution 

from neighbourhood configuration to next state as: 
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he corresponding combinational logic for rule 90 is: 

 

   
1 1 1 1

1 1

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( )

i i i i i

i i i

x t x t x t x t x t

x t x t x t

   

 

  

  
 

 

that is, the next state of ith  cell depends on the present states 

of its left and right neighbours (Figure 1). Similarly, the 

combinational logic for rule 150 is given by: 

 

   1 1( 1) ( ) ( ) ( )i i i ix t x t x t x t      

 

that is, the next state of ith  cell depends on the present states 

of its left and right neighbours as well as its own present state 

(Figure 1). 
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Figure 1 A Hybrid Cellular Automata 

 

A CA characterized by EXOR or EXNOR dependence is called 

an additive CA. If in a CA, the neighbourhood dependence is 

EXOR, then it is called non-complemented CA and the 

corresponding rule is non-complemented rule. For EXNOR 

dependence, CA is called complemented CA and the 

corresponding rule is called complemented rule. There exists 16 

additive rules which are:  

 

Rule 0, 15, 51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195, 

204, 240 & 255 

 

A uniform CA is one in which same rule applies to all cells 

while in hybrid CA (Figure 1) different rules are applied to 

different cells. In our methodology, rule 90 and rule 150 are 

used for cells in CA.  Based upon this, an efficient error 

detecting and correcting code is designed. 

 

B.  Reed-Solomon Code 

In RS code, we assume that n storage devices hold data 

1 2 3 1, , ,.........., ,nD D D D Dn  and m storage devices hold 

checksums 1 2 3 1, , ,........., ,m mC C C C C . These checksums 

are computed from the data. In this code, if any m devices fail 

then they can be reconstructed from the surviving devices. The 

value of checksum device is computed using a function F: 

 

 

 

 

 

 

 

 

                                 

                              =  1 2 3 4 5 6 7 8( , , , , , , , )F D D D D D D D D     

 

If any data Dj changes that is becomes D j then from check 

bytes we can recover the data. 

 

3. MECHANISM FOR CA BASED N-BYTE ERROR 

DETECTING AND CORRECTING CODE 

A. Encoder Section 

In encoder, check bytes are added. For N-byte error detecting 

and correcting code, encoder generates 2N check bytes and 

these check bytes are concatenated with the information bytes, 

which forms the codeword, given as C DG  (Figure 2) 

where 0 1 2 1( , , ,............, )ND D D D D  is N-byte 

information data and G is generator matrix given as: 
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Here NT is N N characteristics matrix corresponding to N 

information bytes and I is N N identity matrix. 

                      1  1  0  0 - - - - - - - 0  0 

                      1  1  1  0 - - - - - - - 0  0 

                      0  1  0  1 - - -  - - - -0  0 

N NT  =  - - - - - - - - - - - - - - - - 

               - - - - - - - - - - - - - - - - 

               - - - - - - - - - - - - - - - - 

               - - - - - - - - - - - - - - - - 

               0  0  0  0 - - - - - - --1  1 
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Figure 2. Codeword Generation 

 

One such rule vector of N cell length CA is < 

150,150,90,150,..............,150,90,150>. Now check bytes (CB) 

computed from characteristics matrix can be given as: 

 
2 3

1 2 3

( 1)
1 0

N N N

N N

CB T D T D T D

T D T D

  


 

  



   

 
       (1) 

 

Where 0 (2 1)N   , corresponding to N-byte error 

correcting code. Based upon this, figure 3 shows the encoder 

section. 

 

B. Decoder Section 

    We consider the problem of decoding to detect and correct 

the erroneous byte positions from the received codeword C. 

The first step is to compute the syndrome. If the received 

codeword is |C D CB  , where  

eD D D   ( D is original information and eD is error in 

information) and eCB CB CB   ,then the syndrome of 

codeword can be expressed as ( ) ( | )TS C HC H D CB   . 

Here H is the parity check matrix formed by concatenating the 

compressed matrix T with the identity matrix N NI  . 
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Figure 3. Encoder Section 

 

Figure 4 shows the syndrome computation block for decoder 

section. The syndrome corresponding to jth check byte Sj is 

given by equation (2): 

 

          ( )j j jS C CB CB                                       (2)  

 

where 0 (2 1)j N   . 

If the syndrome S(C) of a received codeword C is 0, then the 

word is assumed to be error free. If S(C)  0, then errors are 

detected (Table I). 

 

4. ALGORITHM FOR ERROR CORRECTION 

For N-byte error correcting code, following (N+1) cases may 

occur: 

Case I. Single information byte error 

Case II. Double information byte error 

Case III. Triple information byte error 

Case IV. Quadruple information byte error 

    |                                    | 

    |                                    | 

   |                                    | 

   |                                    | 

Case N. N information byte error 

Case (N+1). Infromation byte error and check byte error 
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Figure4. Syndrome Computation Block 

 

Table1.  Error Detection 
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For single information byte (IB) error, suppose jth IB is in error, 

kE is error magnitude, then syndrome equations from (2) are: 

 

    

2
0 , 1 2

2
2

, ,

,

i i
k k k

Ni
N k
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S T E
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Where i k N  . 

From above equations, we get: 

 

   

0 1 1 2 2 3

2 1 2

, , ,

,

i i i

i
N N

T S S T S S T S S

T S S

   

                (3) 

    0kE S                                                                          (4)  

Equation (3) gives the error location and (4) gives the error 

magnitude. 

 

For double IB error, suppose jth and kth IB is in error, so 

corresponding syndrome equations are: 

 

    
i l

j kS T E T E 
    

 

Where 0 2 , ,N i j N l k N      . 

 

From above equations, we get: 

    0 1[ ]i
kE T S S                                                          (5) 

 

    0 lEj S E                                                                 (6) 

 

Equations (5) and (6) gives the errors. 

 

Similarly for triple, quadrule,....................,N IB, error equations 

can be found. 

   In general,         
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For IB and CB errors, out of 2N CB error can be in any 

CB, so we have found that there will be 2N cases for CB. 

Suppose iE is the error in ith information byte and 0e is in first 

CB, then the syndrome equations are: 

 

    

2
0 0 1 2
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1
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From above equations, we can find iE . If iE is error in ith IB 

and 1 2 3 2 2 2 1, , , , ,N Ne e e e e  are errors in CB, we 

can find syndrome equations. In general, we have: 

 

S0 S1 S2 S3 

S7 S6 S5 S4 

S2N-8 S2N-7 S2N-6 S2N-5 

S2N-1 S2N-2 S2N-3 S2N-4 
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 Knowing the error location and error magnitudes, errors are 

corrected  using XOR operation. Suppose iD  and iE are the 

received ith IB and the calculated ith error byte respectively, 

then the correct IB can be calculated as: 

 

        ,i i iD D E                                                               (7) 

 

Where 0 i N  . 

 

5. RESULTS AND COMPARISON FROM 

PREVIOUS EXISTING TWO BYTES CODES 

 

Table II. Error Detection and Correction 
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Table II shows the final errors detection and from equation (7),  

errors can be corrected resulting in correct information bytes. In 

[5], byte error correcting code using CA has been given. But 

this code detects and corrects the atmost three bytes code. In 

our research paper, general algorithm for detecting and 

correcting N-byte code has been proposed. Whatever will be 

value of N, depending upon information bytes proposed system 

will detect and correct the errors. In contrast, the proposed 

encoder section has less hardware complexity than the other 

previously reported architectures [1]-[4].  

 

CONCLUSION AND FUTURE SCOPE 

This paper presents a novel design and algorithm for N-byte 

error detecting and correcting code using cellular automata and 

Reed-Solomon code approach. The circuit design requires 

much less hardware. So the implementation of the proposed 

scheme provides a simple high speed and cost effective solution. 

The proposed algorithm can be implemented in VHDL by using 

Xilinx ISE 9.1i tool for N-byte information signal. 
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