
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 511

N-BYTE ERROR DETECTING AND CORRECTING CODE USING REED-

SOLOMON AND CELLULAR AUTOMATA APPROACH

Parul Gaur
1
, Deepak Gaur

2
, Aruna Tomar

3

Department of Electrical and Electronics Engineering, UIET, PanjabUniversity, Chandigarh, India., parul34@gmail.com

Department of Computer Science and Engineering, ASET, Amity University, Noida(U.P.), India, dgaur@amity.edu

Department of ECE, Marathwada Institute of Technology, Delhi, India, aruna_tomar07@yahoo.com

Abstract
Single and double byte errors are most common errors in memory systems. With the advancement of technologies, more information

bytes can be send over a transmission channel, but this increases the probability of more errors. Here we propose a methodology for

detecting and correcting N-byte errors in the information bytes based on cellular automata (CA) concept. Cellular automata already

accepted as an attractive structure for error detecting and correcting codes. In this paper, highly efficient, reliable and less complex

cellular automata based N-byte error correcting encoder and decoder has been proposed. The design is capable of adding 2N check

bytes corresponding to N information bytes at the encoder, which are used at the decoder section to detect and correct the byte errors.

Keywords— Cellular Automata (CA), Reed-Solomon (RS) code, Information Bytes (IB), Check Bytes (CB)

--***--

1. INTRODUCTION

During transmission of information bytes, it may be possible

that information signal is corrupted by noise, which leads to

change in information signal. It is very important to detect the

errors in the information bytes and correct them. Various

coding techniques have been used for error detecting and

correcting. Error correcting codes have been used to enhance

system reliability and data integrity. The basic concept is to

add check bytes or redundancy to the information bytes at the

encoder so that decoder can recover the information bytes from

the received block possibly corrupted by the channel noise.

Reed -Solomon (RS) codes are most commonly used codes for

error correction because these codes can detect both random as

well as burst errors. Reed-Solomon codes were invented in

1960 by Irving S. Reed and Gustave Solomon, at the MIT

Lincoln Laboratory. Reed-Solomon codes are used in many

applications like wireless communication, satellite

communications, high speed modems and storage devices like

CD, DVD. For example RS (28, 24) and RS (32, 28) is

popularily used for multistorage CD. In this four check bytes

are added to the information bytes, which detects the two byte

errors. Complexity of RS encoder and decoder increases with

the error correcting capability of the codes. A general

decoding scheme for RS decoder based upon pipelined degree

computationless modified Euclidean algorithm is found in [1].

In [1], a high speed pipelined architecture was proposed with

the aim of reducing hardware complexity because of absence

of degree computation circuit and improving the clock

frequency in RS decoders. However conventional RS decoders

[2]-[4] induce relatively huge hardware complexity. A system

designer always prefer to have simple and regular structure for

reliable high speed operations of the circuit. It has been found

that these parameters are supported by local neighbourhood

cellular automata (CA). CA based byte error correcting code

has been proposed in [5]. Till now single, double and atmost

three bytes errors are corrected [5]. In our research paper, a

methodology for detecting and correcting N-byte errors based

upon cellular automata has been proposed. Whatever will be

the value of N, system will detect and correct the errors in the

information bytes. A logic has been generated, which detects

and corrects the errors.

2. PRELIMINARIES

A. CA Preliminaries

CA is an array of cells, where each cell is in any one of the

permissible states. At each discrete time step, the evolution of

the cell depends on the combination logic which is function of

the present state of the cell itself and states of the neighbouring

cells. For two state three neighbourhood, the evolution of the

ith cell can be represented as a function of the present states of

(1)i th , ith and (1)i th cells as:

1 1(1) { (), (), ()}i i i ix t f x t x t x t   where f represents the

combinational logic. For a two state three cellular automata

there are 2
3
 that is, 8 distinct neighbourhood configurations and

2
8
 that is, 256 distinct next state functions. The CA

characterized by a rule known as rule 90, specifies an evolution

from neighbourhood configuration to next state as:

 111 110 101 100 011 010 001 000

 0 1 0 1 1 0 1 0

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 512

he corresponding combinational logic for rule 90 is:

1 1 1 1

1 1

(1) () () () ()

(1) () ()

i i i i i

i i i

x t x t x t x t x t

x t x t x t

   

 

  

  

that is, the next state of ith cell depends on the present states

of its left and right neighbours (Figure 1). Similarly, the

combinational logic for rule 150 is given by:

 1 1(1) () () ()i i i ix t x t x t x t    

that is, the next state of ith cell depends on the present states

of its left and right neighbours as well as its own present state

(Figure 1).

Clock

 Q3 Q2 Q1 Q0

 X3 X2 X1 X0

 Rule 150 Rule 90 GND

Figure 1 A Hybrid Cellular Automata

A CA characterized by EXOR or EXNOR dependence is called

an additive CA. If in a CA, the neighbourhood dependence is

EXOR, then it is called non-complemented CA and the

corresponding rule is non-complemented rule. For EXNOR

dependence, CA is called complemented CA and the

corresponding rule is called complemented rule. There exists 16

additive rules which are:

Rule 0, 15, 51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195,

204, 240 & 255

A uniform CA is one in which same rule applies to all cells

while in hybrid CA (Figure 1) different rules are applied to

different cells. In our methodology, rule 90 and rule 150 are

used for cells in CA. Based upon this, an efficient error

detecting and correcting code is designed.

B. Reed-Solomon Code

In RS code, we assume that n storage devices hold data

1 2 3 1, , ,.........., ,nD D D D Dn and m storage devices hold

checksums 1 2 3 1, , ,........., ,m mC C C C C . These checksums

are computed from the data. In this code, if any m devices fail

then they can be reconstructed from the surviving devices. The

value of checksum device is computed using a function F:

 = 1 2 3 4 5 6 7 8(, , , , , , ,)F D D D D D D D D

If any data Dj changes that is becomes D j then from check

bytes we can recover the data.

3. MECHANISM FOR CA BASED N-BYTE ERROR

DETECTING AND CORRECTING CODE

A. Encoder Section

In encoder, check bytes are added. For N-byte error detecting

and correcting code, encoder generates 2N check bytes and

these check bytes are concatenated with the information bytes,

which forms the codeword, given as C DG (Figure 2)

where 0 1 2 1(, , ,............,)ND D D D D  is N-byte

information data and G is generator matrix given as:

 I 0 0 - - - - -0 I T T
2
 T

3

 0 I 0 - - - - -0 I T
2
 T

4
 T

6

 0 0 I - - - - -0 I T
3
 T

6
 T

9

 - - - - - - - - - - - - - - - - - -

G = - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - -

 0 0 0 - - - - -I I T
N
 T

2N
 T

3N

Here NT is N N characteristics matrix corresponding to N

information bytes and I is N N identity matrix.

 1 1 0 0 - - - - - - - 0 0

 1 1 1 0 - - - - - - - 0 0

 0 1 0 1 - - - - - - -0 0

N NT  = - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - -

 0 0 0 0 - - - - - - --1 1

Cell

3

Cell

2

Cell

1

Cell

0

X

O

R

X

O

R

X

O

R

X

O

R

D1 D2 D3 D4

D5 D6 D7 D8

C1

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 513

 Information Bytes

Figure 2. Codeword Generation

One such rule vector of N cell length CA is <

150,150,90,150,..............,150,90,150>. Now check bytes (CB)

computed from characteristics matrix can be given as:

2 3

1 2 3

(1)
1 0

N N N

N N

CB T D T D T D

T D T D

  


 

  



   

 
 (1)

Where 0 (2 1)N   , corresponding to N-byte error

correcting code. Based upon this, figure 3 shows the encoder

section.

B. Decoder Section

 We consider the problem of decoding to detect and correct

the erroneous byte positions from the received codeword C.

The first step is to compute the syndrome. If the received

codeword is |C D CB  , where

eD D D   (D is original information and eD is error in

information) and eCB CB CB   ,then the syndrome of

codeword can be expressed as () (|)TS C HC H D CB   .

Here H is the parity check matrix formed by concatenating the

compressed matrix T with the identity matrix N NI  .

Clock

 D

 (Information

 Bytes)

 | |

 | |

 | |

 | |

 | |

 | |

Figure 3. Encoder Section

Figure 4 shows the syndrome computation block for decoder

section. The syndrome corresponding to jth check byte Sj is

given by equation (2):

 ()j j jS C CB CB  (2)

where 0 (2 1)j N   .

If the syndrome S(C) of a received codeword C is 0, then the

word is assumed to be error free. If S(C)  0, then errors are

detected (Table I).

4. ALGORITHM FOR ERROR CORRECTION

For N-byte error correcting code, following (N+1) cases may

occur:

Case I. Single information byte error

Case II. Double information byte error

Case III. Triple information byte error

Case IV. Quadruple information byte error

 | |

 | |

 | |

 | |

Case N. N information byte error

Case (N+1). Infromation byte error and check byte error

T

CB D

C = (D|CB)

CB-1

CB-T

CB-T
2

CB-T
2N-2

CB-T
2N-1

 C

C

C

C

C

D

E

C

O

D

E

R

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 514

 | | |

 | | | C

 | | |

 | | |

 | | |

 S(C)

Figure4. Syndrome Computation Block

Table1. Error Detection

S0

S1

S2

S3

- - S2N-2

S2N-1

Err

ors

In

Z Z Z Z - - Z Z Nil

N

Z

Z Z Z - - Z Z CB

1

Z N

Z

Z Z - - Z Z CB

2

| | | | | | | | |

| | | | | | | | |

Z N

Z

N

Z

N

Z

- - NZ NZ >3

CB

N

Z

N

Z

N

Z

N

Z

- - NZ NZ N

CB

For single information byte (IB) error, suppose jth IB is in error,

kE is error magnitude, then syndrome equations from (2) are:

2
0 , 1 2

2
2

, ,

,

i i
k k k

Ni
N k

S E S T E S T E

S T E

   

 

Where i k N  .

From above equations, we get:

0 1 1 2 2 3

2 1 2

, , ,

,

i i i

i
N N

T S S T S S T S S

T S S

   

  (3)

 0kE S (4)

Equation (3) gives the error location and (4) gives the error

magnitude.

For double IB error, suppose jth and kth IB is in error, so

corresponding syndrome equations are:

i l

j kS T E T E 
  

Where 0 2 , ,N i j N l k N      .

From above equations, we get:

 0 1[]i
kE T S S  (5)

 0 lEj S E  (6)

Equations (5) and (6) gives the errors.

Similarly for triple, quadrule,....................,N IB, error equations

can be found.

 In general,

1 0

2 0 1

2 1

[]

|

|

|

|

[]

l

i

i
N N N

E S E

E T S S

E T S S 

 

 

 

For IB and CB errors, out of 2N CB error can be in any

CB, so we have found that there will be 2N cases for CB.

Suppose iE is the error in ith information byte and 0e is in first

CB, then the syndrome equations are:

2
0 0 1 2

(1)
1

, , ,

,

k k
i i i

N k
N i

S E e S T E S T E

S T E


    

 

From above equations, we can find iE . If iE is error in ith IB

and 1 2 3 2 2 2 1, , , , ,N Ne e e e e  are errors in CB, we

can find syndrome equations. In general, we have:

S0 S1 S2 S3

S7 S6 S5 S4

S2N-8 S2N-7 S2N-6 S2N-5

S2N-1 S2N-2 S2N-3 S2N-4

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__

Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 515

2 2 2

2
4 2 0

2 1 2 1

2 1 0

2 2 1

2
5 3 1

1 2 1

5 3 1

|

|

|

|

N N

i

N N

i

N

i

N

i

F S

S S T S

F S

S S T S

F S

S S T S

F S

S S T S



 





      

    

     

    

        

    

        

    

 Knowing the error location and error magnitudes, errors are

corrected using XOR operation. Suppose iD and iE are the

received ith IB and the calculated ith error byte respectively,

then the correct IB can be calculated as:

 ,i i iD D E  (7)

Where 0 i N  .

5. RESULTS AND COMPARISON FROM

PREVIOUS EXISTING TWO BYTES CODES

Table II. Error Detection and Correction

F2N

F2N-1

- - F3

F3

F3

Errors

Detected

In

Z Z -

- Z Z Z IB

NZ NZ - - Z Z Z IB,CB

NZ NZ - - N

Z

Z Z IB,>1 CB

| | | | |

| | | | |

NZ NZ - - N

Z

N

Z

Z IB,>1 CB

NZ NZ - - N

Z

N

Z

N

Z

N

Positions

Table II shows the final errors detection and from equation (7),

errors can be corrected resulting in correct information bytes. In

[5], byte error correcting code using CA has been given. But

this code detects and corrects the atmost three bytes code. In

our research paper, general algorithm for detecting and

correcting N-byte code has been proposed. Whatever will be

value of N, depending upon information bytes proposed system

will detect and correct the errors. In contrast, the proposed

encoder section has less hardware complexity than the other

previously reported architectures [1]-[4].

CONCLUSION AND FUTURE SCOPE

This paper presents a novel design and algorithm for N-byte

error detecting and correcting code using cellular automata and

Reed-Solomon code approach. The circuit design requires

much less hardware. So the implementation of the proposed

scheme provides a simple high speed and cost effective solution.

The proposed algorithm can be implemented in VHDL by using

Xilinx ISE 9.1i tool for N-byte information signal.

REFERENCES

[1]. Seungbeom Lee, Hanho Lee, Jongyoon Shin and Je-Soo-

Ko, “A High-Speed Pipelined Degree Computationless

Modified Euclidean Algorithm Architecture for Reed-Solomon

Decoders”, ISCAS 2007.

[2].H.M.Shao,T.K.Truong,L.J.Deutsch, J.H.Yuen and

I.S.Reed, “A VLSI design of a pipeline Reed Solomon

decoder,” IEEE Transctions on Computers, vol. C-34, no.5,

pp.393-403, May 1985.

[3].W.Wilhelm, “A New Scalable VLSI Architecture for

Reed-Solomon Decoders,” IEEE Journal of Solid-State

Circuits, vol.34, no. 3, March 1999.

[4]. H.Lee, “High speed VLSI Architecture for Parallel Reed-

Solomon Decoder,” IEEE Transctions on VLSI Systems, vol.

11, no. 2, pp. 288-294, April 2003.

 [5]. R.Nithiya, S.Sridevi, “Byte Error Correcting Code Using

Cellular Automata,” International Journal of Communications

and Engineering, vol. 5, no. 5, March 2012.

 [6]. Amrita Sajja, Lakshmi Sarojini Pilla, N.V.S. Prabhavati,

“FPGA Implementation of CA-Based Byte Error Detecting and

Correcting Codec,” IACQER.

[7]. J.Bhaumik, D.Roy Chowdhury, I.Chakrabarti, “An

Improved Double Byte Error Correcting Code using Cellular

Automata,” ACRI 2008.

