
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 496

IMPLEMENTATION OF LOW POWER DIVIDER TECHNIQUES USING

RADIX

Rakesh Jain

Research Scholar M. Tech. VLSI, Mewar University, rk_patni10@yahoo.com

Abstract
This work describes the design of a divder technique Low-power techniques are applied in the design of the unit, and energy-delay

tradeoffs considered. The energy dissipation in the divider can be reduced by up to 70% with respect to a standard implementation not

optimized for energy, without penalizing the latency. In this dividing technique we compare the radix-8 divider is compared with one

obtained by overlapping three radix-2 stages and with a radix-4 divider. Results show that the latency of our divider is similar to that

of the divider with overlapped stages, but the area is smaller. The speed-up of the radix-8 over the radix-4 is about 23.58% and the

energy dissipated to complete a division is almost the same, although the area of the radix-8 is 67.58% larger.

---***---

1. INTRODUCTION

Division is the most complex of the four basic arithmetic

operations and, in general, does not produce an exact answer,

since the dividend is not necessarily a multiple of the divisor.

Therefore, the correct quotient and remainder are usually

obtained through performing a sequence of iterations until the

desired precision is reached. This procedure is called

sequential division and serves as the basic principle for many

practical implementations [1, 3, 4].

This work describes the design of a double-precision radix-8

divider. The unit is designed to reduce the energy dissipation

without penalizing the latency.

The algorithm used is the digit-recurrence division algorithm

described in detail in [3]. Digit-recurrence algorithms retire in

each iteration a fixed number of result bits, determined by the

radix. Higher radices reduce the number of iterations to

complete the operation, but increase the cycle time and the

complexity of the circuit. There are not many implementations

of high-radix dividers, and the purpose of this paper is to

determine the performance and the energy dissipation of a

radix-8 unit. An evaluation of the area and performance of a

radix-8 divider was done in [3] without an actual

implementation. In [4] an algorithm for radix-8 division and

square root with shared hardware is implemented. In [11] the

implementation of a divider with three radix-2 overlapped

stages is presented. In [5] it is commented that stages with

radices larger than four are not convenient because of the

increased complexity of the digit-selection function. We

present here our implementation of a low-power radix-8

divider, compare its performance with the implementation

presented in [11] and evaluate the speed-up and the energy

consumption with respect to a more common radix-4 unit.

Moreover, some energy-delay tradeoffs are considered.

The primary objective of the design is to perform the

operation in the shortest time. Then low-power design

techniques are applied in order to reduce the energy dissipated

in the unit. Area is not minimized, but some energy reduction

techniques reduce the area as well.

The implementation of the divider was done using the

Passport 0.56 m standard-cell library [2]. The structural

model was obtained by both manual design and synthesis of

the functional blocks, and was laid out by using automatic

floor-planning and routing. The latency of the division is

reduced by choosing appropriate parameters in the algorithm

that affect both the critical path and the number of iterations,

http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#div_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#div_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#fandrianto
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#zyner
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#arith13_oberman
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#zyner
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#passport

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 497

as described in Section 2. Section 3 describes the design for

low-power

In Section 4 the divider is compared with a radix-8 obtained

by overlapping three radix-2 stages, using a scheme similar to

that implemented in the Sun UltraSPARC processor [11], and

with a radix-4 divider [8].

The results show that the energy dissipation in the radix-8 unit

can be reduced by up to 70% with appropriate low-power

design techniques

2.ALGORITHM AND IMPLEMENTATION

The radix-8 division algorithm, described in detail in [3], is

implemented by the residual recurrence

w[j+1] = 8w[j] - qj+1d

j = 0,1……. m

with initial value w[0] = x , where x is the dividend, d the

divisor, and qj+1 the quotient digit at the j-th iteration. Both d

and x are normalized in [0.5, 1). The quotient digit is in

signed-digit representation {-a,…..,-1,0,1, ……, a} with

redundancy factor p = a/7. The residual w[j] is stored in carry-

save representation (wS and wC). The quotient digit is

determined, at each iteration, by the selection function

qi=SEL (ds,y)

where d is d truncated after the -th fractional bit and [y] =

8wS + 8wC truncated after t fractional bits.

The recurrence is implemented with a selection function

(SEL), a multiple generator, a carry-save adder (CSA) and two

registers to store the carry-save representation of the residual.

In order to avoid the implementation of a complicated multiple

generator, the quotient digit is split into two parts qH with

weight 4 and qL with weight 1 (qj = 4qH + qL) and the digit

set of each part is reduced to {-2,-1,0,1,2}. Four signals (M2,

M1, P1, P2) are used to represent these five values in a one-

out-of-four code (zero is coded as (0,0,0,0)). This

representation makes the multiple generator simple.

Since the selection function (SEL) is in the critical path, to

have the minimum latency we have to minimize its delay. We

explored the implementation of three possible values of a: 6,

7, and 10 (the maximum value possible with the above

mentioned representation). Table 1 shows a summary of the

results. The gate-level implementation was obtained by

synthesizing the VHDL description of the selection function

with Compass ASICSynthesizer. This includes both the

assimilation of the carry-save representation of [^y] and the

actual digit-selection function.

Table 1: Summary selection function

From Table 1, we can see that SEL for a = 7 is as fast as for a

= 6, but its area is smaller. Surprisingly, the delay for the over-

redundant case a = 10 is larger. Therefore, the SEL for a = 7 is

chosen, which results in a redundancy factor p = 1.

A first implementation of the divider is shown in Figure 1.

The scheme is completed by a controller (not depicted in the

figure). The conversion block performs the conversion and the

rounding. The quotient is rounded in the last iteration

according to the sign of the final residual and the signal that

detects if it is zero, which are produced by the sign-zero-

detection block (SZD).

To have the divider compliant with IEEE standard for double-

precision (53-bit significand normalized in [1,2)) while

operating with fractional values, 1-bit shifts are performed on

the operands. Moreover, to have a bound residual in the first

iteration (w[0] = x d), when x � d we shift x one bit to the

right obtaining a fractional quotient. To compute the 53 bits of

the quotient and an additional bit to perform rounding, 54/3 =

18 iterations are required. An additional cycle is required to

load the value x as first residual w[0]. However, for the

proposed architecture and selection function, the simplest way

to accomplish this is to do as follows:

 Clear the registers for w (this is done at the end

of the previous division). With the selection

function we have implemented, this produces a

q1 = 1.

 Compute w[1] = x - d using the hardware for the

recurrence. This requires a multiplexer, which is

not on the critical path.

 For q1 to be 1, we shift the dividend three bits to

the right. As a consequence, it is necessary to

shift the final quotient accordingly,

In conclusion, the load cycle is substituted by an extra

iteration for a total of 20 iterations: 19 to compute the digits

and one for the rounding. Finally, the quotient is normalized in

[1,2) by shifting it four positions to the left. Note that all shifts

are done by wiring and do not affect the latency of the

operation. In the recurrence (w[j]) we need 54 fractional bits

and 2 integer bits: one to hold the sign and the other to avoid

the overflow in the CS-representation (being p = 1).

There are two possible critical paths, one going through qH

and the other through qL. Since the delay of qH is smaller than

that of qL, but the number of adders to traverse is larger, a

good design tries to equalize the delays of both paths. The

resulting critical paths, pre-layout, are

The addition of the delay due to the clock distribution tree and

the interconnection capacitance results in a post-layout critical

path of 10.5 ns.

http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#zyner
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#nl_islped96
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#div_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#table_qdsel
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#table_qdsel
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8b

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 498

Figure 1: Radix-8 divider implementation.

Figure 2: Low-power implementation.

3. LOW POWER IMPLEMENTATION

In this Section we apply techniques for the reduction of the

energy dissipation in the unit of Figure 1. Some of the

techniques applied here are described in [8] for the case of a

radix-4 divider. These are adapted for radix-8 in Sections 3.1-

3.4. In addition, techniques specific to radix-8 are introduced:

Section 3.5 describes the partitioning of the selection function

and Section 3.6 extends the modified convert-and-round

algorithm (refer to [8] for a complete description) to the case p

= 1. Finally, in Section 3.7 an evaluation of the impact of dual

voltage on the low-power implementation is given.

http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8b
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#nl_islped96
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#nl_islped96

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 499

Figure 2 shows the implementation of the low-power radix-8

divider and Table 2 summarizes the results obtained by

applying the low-power techniques described in Sections 3.1-

3.7. In the Table, entry std refers to the standard

implementation, optimized for speed, and entry l-p is the low-

power implementation. It was not possible to implement dual

voltage with our cell library so that entry d-v is an estimate of

a possible implementation.

3.1. Switching- off not active blocks

The sign-zero-detection block (SZD), which is only used in

the rounding step, is switched off by forcing a constant logic

value at its inputs during the recurrence steps. The reduction is

about 8%.

3.2 Retiming the recurrence

The position of the registers in a sequential system affects the

energy dissipation. Retiming is the transformation that

consists in re-positioning the registers in a sequential circuit

without modifying its external behavior [6].

For the recurrence, the retiming is done by moving the

selection function of Figure 1 from the first part of the cycle to

the last part of the previous cycle (see Figure 3.a and

Figure 3.b). Two new registers (qH and qL) are needed to

store the quotient digit.

By retiming the recurrence we reduce the switching activity in

the multiple generators and in the CSAs, and change the

critical path that is now limited to the eight most-significant

bits. This allows the rest of the bits in the recurrence to be

redesigned for low power.

3.3 Reducing transitions in multiplexer

The multiplexer in Figure 1 is used to select either x in the

first iteration or the residual in the others. The number of

transitions in the mux can be reduced by moving it out of the

recurrence, as shown in Figure 2. Consequently, the operations

in the first cycle are modified by resetting registers qH and qL

to 0 and -1 respectively and by storing x in w[0] = 0 - (-x).

3.4Changing the redundant representation

By using a radix-8 carry-save representation with three sum

bits and one carry bit for each digit in the recurrence, as shown

in Figure 4, we only need to store one carry bit for each digit,

instead of three. This can be done for the 45 LSBs that, after

the retiming, are not on the critical path.

Furthermore, after the retiming, the eight MSBs, assimilated in

the adder inside the selection function block (Figure 2), can be

stored in wS eliminating another eight flip-flops in wC.

Figure 3: Retiming and critical path. a) before retiming, b)

after retiming, c) after retiming and skewing the clock.

Figure 4: Radix-8 carry-save adder (lower).

By retiming, moving the mux, and changing the

representation, the reduction in l-p with respect to std is about

14%.

http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8f
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#table_energyR8
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#mdg_retiming
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8b
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#cripath
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#cripath
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8b
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8f
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#csa3b
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#divR8f

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 500

Figure 5: partitioned selection function.

3.5 Partitioning and disabling selection function

The quotient-digit selection is a function of three bits of the

divisor and eight of the residual.

In the radix-8 case, Figure 5 shows the partitioning in eight

parts (all the possible values of d3) for both the higher and

lower parts. The demultiplexer transmits the assimilated value

of [^y] to the selected pair of selection tables and forces to

zero the output of the others. Finally, an array of OR gates

combines the partial values.

Experimental results showed that the partitioned selection

function dissipates less energy, but the critical path increased.

The smaller selection functions are faster than the

implementation in one piece, but the delays in the

demultiplexer and the OR gates offset the improvement.

3.6. Modifications in conversion And Rounding

The on-the-fly convert-and-round algorithm [3] performs the

conversion from the signed-digit representation to the

conventional representation in 2's complement. The

conversion is done as the digits are produced and does not

require a carry-propagate adder. The algorithm, in its original

formulation, did not consider the energy dissipation, resulting

in about 30% of the whole divider.

For p = 1, the partial quotient is stored in three registers (Q,

QM, QP) updated in each iteration by shift-and-load

operations, and the final quotient is chosen among those

registers during the rounding. The large amount of energy

dissipated in the unit is mainly due to the shifting during each

iteration and to the number of flip-flops, used to implement

the registers.

As a first step to reduce energy dissipation, we load each digit

in its final position [9]. In this way, we avoid to shift digits

along the registers. To determine the load position we use an

18-bit ring counter C, one bit for each digit to load.

3.7. Using dual voltage

The power dissipated in a cell depends on the square of the

voltage supply (VDD) so that significant amount of energy

can be saved by reducing this voltage [1]. However, by

lowering the voltage the delay increases, so that to maintain

the performance this technique is applied only to cells not in

the critical path. Different power supply voltages require

level-shifting circuitry that dissipate energy. However, by

using two voltages we only need to level-shift when going

from the lower to the higher voltage [13]. In our case, the 45

least-significant bits in the recurrence can be redesigned for

low voltage, as shown in Figure 7. The voltage-level shifters

are not needed until a specific digit moves towards the eleven

MSBs, by shifting across iterations and into the critical path.

By placing the voltage-level shifters (a total of three) in the

digit immediately before the eleven MSBs the cycle time is

not increased and the energy dissipated in the level-shifting

circuitry is small.

We can apply the dual-voltage technique also to the convert-

and-round unit which is not in the critical path. The number of

level-shifters required is 53, as many as the double-precision

significand representation, but because of the new algorithm,

each bit switches at most twice and the energy dissipation in

the level-shifters does not offset the reduction due to the lower

voltage.

We estimated a reduction of about 50% in d-v with respect to

l-p if low-voltage gates were available.

4. COMPARISON WITH RADIX-4

IMPLEMENTATION

To evaluate the tradeoffs between energy and delay, we

compare the radix-8 divider with the radix-4 unit previously

presented in [8]. We chose a radix-4 divider for the

comparison because the algorithm is the same with the only

variation of the radix, and the techniques to reduce the energy

are similar.

The radix-4 divider has the disadvantage of requiring more

cycles to compute the quotient (30 cycles) but the advantage

of a shorter iteration cycle (faster clock) and smaller area.

The performance metric used is the time elapsed per operation

which is tdiv = Tcycle ×(no. of cycles). The energy measure is

the energy per division Ediv and we also include the energy

per cycle Epc. Table 5 summarizes the characteristics of the

two dividers.

http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#sel_part
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#div_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#tr_convert
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#anantha_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#hrw_scaling
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#vscaling
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#nl_islped96
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#table_R4vsR8

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 501

Table 5: Radix-4 vs. radix-8 divider

 radix-4 radix-8 [unit]

Tcycle 9.3 11.5 ns

tdiv 260 215 ns

Ediv 26.0 26.6 nJ

Epc 1.9 2.4 nJ

Area 2.2 2.8 mm2

The speed-up for the radix-8 over the radix-4 is about 20%,

while the increase in the energy-per-division is less than 2%.

On the other hand, the radix-8 has an energy-per-cycle which

is 50% larger. Our design shows that the increase of area

(about 50%) does not reflect on the energy dissipated to

complete an operation, which is almost the same because of

the reduction in the number of cycles. The radix-4 divider is

smaller, but it is slower and consumes almost the same amount

of energy per operation.

REFERENCES

[1]. A. P. Chandrakasan and R. W. Brodersen. Low Power

Digital CMOS Design. Kluwer Academic Publishers, 1995.

[2]. Compass Design Automation. Passport - 0.6-Micron, 3-

Volt, High-Performance Standard Cell Library. Compass

Design Automation, Inc., 1994.

[3]. M. Ergegovac and T. Lang. Division and Square Root:

Digit-Recurrence Algorithms and Implementations. Kluwer

Academic Publisher, 1994.

[4] J. Fandrianto. Algorithm for high-speed shared radix-8

division and radix-8 square root. Proc. of 9th Symposium on

Computer Arithmetic, pages 68-75, Sept. 1989.

[5]. D. Harris, S. Oberman, and M. Horowitz. SRT division

architectures and implementations. Proc. of 13th Symposium

on Computer Arithmetic, pages 18-25, July 1997.

[6]J. Monteiro, S. Devadas, and A. Ghosh. Retiming

sequential circuits for low power. Proc. of 1993 International

Conference on Computer-Aided Design (ICCAD), pages 398-

402, Nov. 1993.

[7]A. Nannarelli. PET: Power evaluation tool, Aug. 1996.

http://www.eng.uci.edu/numlab/PET/.

[8]A. Nannarelli and T. Lang. Low-power radix-4 divider.

Proc. of International Symposium on Low Power Electronics

and Design, pages 205-208, Aug. 1996.

[9]A. Nannarelli and T. Lang. Low-Power Convert-and-Round

Unit. Technical Report, Jan 1997. Available on the WWW at

http://www.eng.uci.edu/numlab/archive/pub/nl97p02/.

[10]W. Nebel and J. Mermet editors. Low Power Design in

Deep Submicron Electronics. Kluwer Academic Publishers,

1997

[11]A. Prabhu and G. Zyner. 167 MHz radix-8 divide and

square root using overlapped radix-2 stages. Proc. of 12th

Symposium on Computer Arithmetic, pages 155-162, July

1995.

[12]. J. M. Rabaey, M. Pedram, et al. Low Power Design

Methodologies. Kluwer Academic Publishers, 1996.

[13]K. Usami and M. Horowitz. Clustered voltage scaling

technique for low-power design. Proc. of International

Symposium on Low Power Design, pages 3-8, Apr. 1995.

http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEanantha_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEpassport
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEdiv_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEfandrianto
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEarith13_oberman
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEmdg_retiming
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEpet_url
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEnl_islped96
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEtr_convert
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEciocco_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEzyner
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEpedram_book
http://gram.eng.uci.edu/~numlab/archive/pub/nl98p02/nl98p-02.html#CITEhrw_scaling

