
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 297

DEVELOPING REUSABLE SOFTWARE COMPONENTS FOR

DISTRIBUTED EMBEDDED SYSTEMS

K. Subba Rao
1
, S. Naga Mani

2
, M.Santhosi

3
, L. S. S. Reddy

4

1
Associate Professor, IT, LBRCE, Mylavaram, India, ksubbarao_22@yahoo.co.in

2
Assistant Professor, IT, LBRCE, Mylavaram, India,luckiestmani@gmail.com

3
Assistant Professor, CSE, LBRCE, Mylavaram, India, santhosi550@gmail.com
4
Professor& Director, CSE, LBRCE, Mylavaram, Indi a, director@lbrce.ac.in

Abstract
Software reuse is one of the technical approach that many believe can reduce software development time and cost. Reuse is clearly a

partial solution to the long and costly development problems with complex control systems.This paper discusses why software is hard

to reuse and why we cannot extend reuse analogies in other fields to software. The proposed approach is based on an incremental

strategy and addresses managerial, economic, performance and technology transfer issues. This approach is practical, effective, and

has potential to make reuse a regular practice in the software development process. This paper explores what is necessary for ac-

complishing systematic reuse and recommends strategic approach for reuse of software

Index Terms: Software reuse, Systematic reuse, Software development, Incremental strategy

---***---

1. INTRODUCTION

The concept of reuse in engineering is simple. It has been

successfully applied in several areas, from civil engineering to

electronics. In fact most engineering disciplines are based on

the reuse concept from components to formulas to ideas.

Despite several years of trying to bring reuse to practice,

software engineers have found out that reuse in software is not

the same as in other areas that software is very hard to reuse.

1.1 Reuse in Conventional Engineering

Reuse in traditional engineering is part of the engineering

process. In aeronautical design, for example, engineers are

thought that airfoils exhibit certain performance characteristics

based on their geometry and that lift to drag ratio is an

important factor of an airfoil. When designing a wing, an

airfoil is usually selected from a catalog of tested and certified

airfoils (e.g., NACA). An airfoil defines the cross section

geometry of a wing and defines most of the wing charac-

teristics. The selection is based on the wing performance

requirements. Practice in making the choice that provides the

best balance in the requirements and the one that does not

compromise key requirements is what makes a good engineer.

Engineers are, therefore, good reusers by training, even if they

never took a reuse course.

1.2 Reuse in Software Engineering

The state of the practice in software engineering has been, by

far, to blindly satisfy the given requirements. Significant work

has been done on requirements verification, that is, to

ascertain that a final design or product truly satisfies the given

requirements. This implies that once a set of requirements are

given, and accepted, they are never questioned. The goal of

the software engineer is to satisfy them, completely and

correctly. Unfortunately, software engineers are not trained

like other conventional engineers—to make optimum trade-off

decisions. Implicit reuse is not part of their regular practice;

reuse is explicit and has to be acquired later. In fact, except

for modern software engineering courses, software

engineering students have been typically trained for individual

work where they are asked to create their own programs from

scratch.

1.3 Developing Software Hard

It seems that software’s main advantage-its softness-is

suddenly becoming its major liability. As long as we see

software as a malleable object, agreeing on conventions and

standards will be a continuous uphill battle. How can we

inject some element of hardness into software to make it more

amenable to standardization? One answer is complexity. By

making software elements more complex it becomes less

attractive to create them and more attractive to reuse them.

Defining sets of standard domain specific software

components could be a relatively straight forward process.

Committees of domain experts could analyze their own

domains, identify common functions, engineer them, and

declare them the standard components. This idealized

standardization is in sharp contrast with reality. In the world

of software it is the market who defines the standards, and

those standards are not necessary the best (e.g., DOS,

Windows.) Standards evolve, for the most part, not by

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 298

imposing them (e.g., Ada) but by free choice (e.g., C, Unix.).

Visual Basic and its exploding industry of VB ad-ons is a clear

example of both arguments: complexity stimulates reuse, and

market trends define standards. Making software components

harder to create and easier to buy will stimulate software

engineers to become true designers in the traditional

engineering sense—to practice genuine trade-off analysis.

Applications involving Visual Basic, for example, will call for

use of commercially available components. Such applications

will exhibit, with time, certain common features that will be

adopted as standards. The role of the software engineer will

resemble more closely the role of a traditional engineer:

selecting the best combination of existing components that

will generate a “good,” not necessarily the “best,” design.

And one that will force some compromises on the require-

ments.

2. RELATED WORKS

The proposed an incremental, systematic, and formal approach

to establish reuse programs in software organizations. A reuse

program is an organizational structure and collection of

support tools aimed at fostering, managing, and maintaining

the practice of reusing software in an organization. The

strategy in incremental approach is that provides continuous

feedback for correction and adaptation allowing for later

integration of critical issues left aside in the beginning.

2.1 Reuse in Conventional Engineering

Embedded systems have managed to spread rapidly over the

past few decades to be virtually in any kind of today

appliances such as digital watches, set-top boxes, mp3players,

washing-machines, mobile telephones, cars, aircrafts, forest

machines and many more. Also, many embedded systems

have to observe real-time constraints which mean that they

must react correctly to events in an appropriate amount of

time, neither too fast nor too slow. When all the timing

requirements must strictly be ensured, embedded systems are

called hard real-time systems whereas soft real-time systems

are more flexible in that sense that they can tolerate to miss

some timing requirements without generating negative effects.

The respect of timing constraints is of prime importance for

maintaining the safety of the physical device which relies on

it. One major issue in dealing with safety-critical real-time

embedded system is therefore to ensure that the system

behaves correctly even in the worst possible situations.

2.2 Distributed Embedded Systems

Distributed embedded systems developed by several

organisations are common in, e.g., the vehicle industry and in

the automation industry. The systems consist of several

computer nodes connected with one or several networks,

where each node can be developed by different organisations

specialised on different areas. For example, a modern car in

the premium segment has 40 or more computers (Electronic

Control Units (ECUs)), where the engine control ECU comes

from a specialized engine developing organization, and the

climate control ECU is developed by an organisation that

focuses on the passenger cabin. These different ECUs can be

seen as large and complex COTS components, they contain

hardware (processor, communication hardware, memories,

and I/O units), and software (operating system, device drivers,

and control system software).

2.3 Why Is Reuse Not Delivering

Software reuse is still far from crystallizing the ideas of a

software industry based on interchangeable standard parts.

The problem is not lack of tools and technology but

unwillingness to address managerial, economic and several

other issues influencing software reuse. We find ourselves

with a full toolbox but unable to use these tools effectively.

There is a need to learn what the relationships are between the

technical and nontechnical aspects, how one influences the

other, and what makes a reuse program a success or a failure.

2.4 Model for Implementing Reuse Programs

This paper proposes an incremental, systematic, and formal

approach to establish reuse programs in software

organizations. A reuse program is an organizational structure

and collection of support tools aimed at fostering, managing,

and maintaining the practice of reusing software in an

organization. The remaining of the paper presents a model for

creating and operating reuse programs in an organization and

makes reference to some successful reuse experiences that

support the ideas of this model. Figure 1 is a high level view

strategy for implementing reuse programs. A key ingredient is

management support which is a common factor in all

successful reuse programs Management commitment is

essential because reuse programs demand changes in the way

software is developed. Current methodologies and procedures

do not include reuse as part of their process. Management

must provide the necessary company resources required to

start, evolve, and operate a reuse program and also make

available necessary key information for assessing the reuse

potential of the organization. The outcome of the "assess reuse

potential" activity is an assessment report that includes an

implementation plan. The implementation plan controls the

reuse program. The inputs to the reuse program (i.e.,

"implement reuse program incrementally") include software

from existing systems and requirements for future systems.

The products of a reuse program include a series of software

catalogs, an automated library system, generic architectures,

and a collection of reusable components.

2.4 Assessment Report

The proposed assessment report includes: feasibility analysis,

domain suitability assessment, cost-benefit analysis, and an

implementation plan. Below are some of the questions that

should be answered by each document.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 299

Feasibility analysis- Does the organization have enough

resources (financial and human) to implement a reuse

program? Can the organization afford it? Is reuse necessary in

the organization? Does the organization want to do it? Is

management alternative? (compare and contrast). Does a

critical mass of software engineers exist? Is software

production large enough to justify a reuse program? What is

the software volume produced by

implement reuse
program
incrementally

assess reuse
potential

management
support

existing software

requirements
for future s/w
systems

company
information

company resources

implementation
plan

Assessment Report

• feasibility analysis

• domain suitability

• cost-benefit analysis

• implementation plan

staged catalogs

automated library
system

generic
architectures
(domain models)

reusable
components

Figure 1- Strategy for Implementing Incremental Reuse

Programs

 Cost benefits analysis- How much does it cost? (cost

schedule). Is a reuse program economically feasible?

Is it worth doing it? What alternatives exist for

implementing a reuse program? What is the scope?

How big a program is it contemplated? (corporate

level, division, project, etc.). What are the

expectations? What is the desired level of reuse?

(partial, opportunistic, formal, total).

 Implementation plan- The incremental model below

explains the implementation details. The model can

be used to provide time and cost schedules.

2.5 Implementing Reuse Program

Figure 2 shows the proposed model. A reuse program can be

implemented in four basic stages: Initiation, Expansion,

Contraction, and Steady State.

 Stage 1: Initiation- Existing software is analyzed to

select potentially reusable components. Component

descriptors are extracted manually or automatically

and a preliminary index is produced. The index can

be generated using free text information retrieval

techniques based on word frequency analysis

[Salt83]. A stage 1 catalog is generated and

distributed. This first catalog informs software

engineers in the organization about potentially

reusable software. Stage 1 can be started at a project

level involving one part-time individual at almost

negligible cost. This first catalog raises the level of

awareness about reuse in the project and stimulates

other individuals to identify potentially reusable

components.

 Stage 2: Expansion- The size of the catalog increases

as more of the existing software is identified for

reuse, thus, placing a demand for a classification

scheme. An initial faceted classification scheme is

produced and included with the stage 2 catalog.

Based on data from the feasibility study, an

automated library system could be contemplated for

supporting distribution and availability of the

catalog, and for refinement and maintenance of the

faceted classification. A faceted scheme also

provides basic domain models in the form of

taxonomies and standard descriptors or lexicons

which in turn support bootstrapping the domain

analysis process. This second stage requires more

resources than stage 1. A part time domain expert

and a part time librarian are sufficient for a reuse

program involving two or three projects. Further

growth is stimulated by the availability of an

automated, well organized catalog.

 Stage 3: Contraction- Domain analysis is the key

activity in this stage. Early domain models from

stage 2 together with more detailed information from

existing systems and from requirements for future

systems are used for domain analysis. Standard

architectures and functional models are derived and

common components are grouped to support basic

generic functions. Redundant and ineffective

components are identified and retired from the

collection leaving only components that support

functions and features of the domain architecture.

This results in a contraction in the size of the

collection. The collection and classification are

updated and a stage 3 catalog made available. Stage 3

requires the most resources.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 300

stage 1

initiation

stage 2

expansion

stage 3

contraction

stage 4

st. state

stages > 4: ref inement

design for

reuse

make

incremental

catalogs

select

reusable

components

do

preliminary

indexing

derive

faceted

classification

scheme

analyze

domain

existing

software

requirements

for future sw

systems

staged

catalogs

automated

library

system

generic

architectures

reusable

components

faceted

scheme

component

descriptors

free text

index

domain

models

active through

all stages

parts

info

Figure 2- Reuse Program Implementation

 Stage 4: Steady State- After identifying the essential

elements for software systems in a specific domain,

existing components are progressively replaced by

components supporting domain specific functions.

These components are explicitly designed to be

reusable since they plug directly into the domain

architecture. Further stages of the program should not

increase the size of the collection but only make

current components more efficient and reliable.

Performance and reusability data is fed-back to

domain analysis for model refinements. New catalog

editions are made available periodically. The required

resources for a program involving several projects

may include a domain analyst, several domain

experts and two or more software engineers (also

called domain engineers).

2.5 Implementing Reuse Program

The proposed model for implementing reuse programs

proceeds incrementally. It is also systematic and formal.

Incremental means the program is implemented in progressive

steps or stages where each stage sets the basis for the

following stage. Some advantages include:

 Provides immediate return on investment.

 Builds confidence within the organization.

 Easier to manage.

 Allows for tuning and refining the reuse process.

 Facilitates monitoring and evaluating reuse.

Systematic means that the process is consistent and repeatable

and follows a logical progression of events. The following are

some of the advantages:

 Makes reuse an integral part of software

development.

 Makes reuse a standard practice with a potential to

become compulsory.

 Helps towards a better software development

methodology.

 Makes everybody a participant.

 Promotes a reuse culture.

Formal means the process can be decomposed into well

defined steps, each being complete and described in some

accepted representation. Advantages of formalizing reuse in-

clude:

 Promotes creation of standards

 Improves quality and reliability

 Facilitates management control

 Helps in identifying support tools

 Increases potential for reuse across organizations

2.6 Observations

The proposed model provides a learning environment to

enable domain analysis and a basic mechanism to establish

reuse programs. A library system, for example, should be seen

as an instrument to achieve reuse not as the objective of reuse

as is often the case. The incremental nature of the model

provides the needed integration of people, tools, and

processes. It also encourages management to support and

participate in it. The main economic advantage of this

approach is an immediate return on investment. Organizations

have avoided implementing reuse programs because of the

perceived need for a large initial investment, which

management may find difficult to justify, and because of the

uncertainty about the success of reuse. The strategy in this

model is to start with a very small initial investment and to

justify each further step with the results of the previous step.

2.7 Required Organizational Structure

An organizational structure is essential to establish a

successful reuse program. A basic structure includes six

groups:

 Asset Management Group- provides initiatives, funding,

and policies for reuse.

 Identification and Qualification Group- identifies

potential reusability areas and collects, procures, and

certifies new additions to the collection.

 Maintenance Group- maintains and updates reusable

software components.

 Development Group- creates new reusable components

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 301

 Reuser Support Group- assists and trains users and runs

tests and evaluations of reusable components.

 Librarian- updates and distributes catalogs, classifies new

assets, maintains library system, and manages asset

orders.

This list defines the basic roles in a reuse program. It does not

imply that each role is assigned to one or more individuals.

During Stage 1, for example, all six roles may be assigned to

one individual, but, as the program evolves, selected in-

dividuals may be assigned to specialized roles. A corporate

wide program during contraction mode, for example, may

have a staff of 10 or more.

2.8 Required Organizational Structure

 Stable- the same structure supports all stages of a

reuse program

 Flexible- roles and people can be changed without

affecting function

 Evolvable- may start with a minimum of one person

in multiple roles and evolve to multiple teams with

specific roles.

 Practical- provides an infrastructure for the practice

of reuse.

 Effective- focused tasks by defining specific roles.

 Economical- cost, complexity, and size adjustable to

organization budget.

CONCLUSIONS

A model for implementing reuse programs has been

presented. The model is procedural and defines activities

essential to enabling reuse programs in software

organizations, and addresses several of the factors that impede

the effective practice of reuse. The model is incremental, sys-

tematic, and formal and is based on evidential experience.

REFERENCES:

[1]. Lanergan, R.G. and B.A. Poynton "Reusable Code: The

Application Development Technique of the Future." In

Proceedings of the IBM SHARE/GUIDE Software

Symposium, IBM, Monterey, CA, October, 1979

[2]. Matsumoto, M. "SEA/I: Systems Engineer's Arms for

Industrialized Production and Support of Application

Programs". In Proceedings of 6th International Conference on

Software Engineering, pp 39-40, Tokyo, September, 1982.

[3]. McIlroy, M.D. "Mass-produced Software Components".

In Software Eng. Concepts and Techniques, 1968 NATO

Conf. Software Eng., ed. J.M. Buxton, P. Naur, and B.

Randell, pp 88-98, 1976.

 [4]. Prieto-Díaz, R. "Implementing Faceted Classification for

Software Reuse". Communications of the ACM, (April, 1991).

[5]. Salton, G. and M.J. McGill, Introduction to Modern

Information Retrieval. McGraw-Hill, New York, 1983

[6]. Swanson, M.E. and S.K. Curry, "Implementing an Asset

Management Program at GTE Data Services". Information

and Management 16, 1989.

[7]. Sandeep Agrawal, Pankaj Bhatt. Real-time Embedded

Software Systems An Introduction, August 2001.

[8]. Xia Cai, Michael R. Lyu, and Kam-Fai Wong.

Component-Based Embedded Software Engineering:

Development Framework, Quality Assurance and A Generic

Assessment Environment, International Journal of Software

Engineering and Knowledge Engineering Vol. 12, No. 2

(2002) 107.

[9]. J.M. Boyle and M.N. Muralidharan, “Program Reusability

through Program Transformation,” IEEE Transactions on

Software Engineering, vol. SE-10, no. 5, September 1984, pp.

574-588.

[10]. D'Alessandro, M. Iachini, P.L. Martelli, “A the generic

reusable component: an approach to reuse hierarchical OO

designs” appears in: software reusability, 1993.

 [11]. M. BjÄork. QoS management in configurable real-time

databases. Master's thesis, Department of Computer Science,

LinkÄoping University, Sweden, 2004.

