
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 289

IMPLEMENTATION OF USB TRANSCEIVER MACROCELL

INTERFACE

A. Vamshidhar Reddy
1
, A.Laxman

2
,.Prakash

3
L, T.Satyanarayana

4

1
Assoc.Prof. ECE Department, RRS COLLEGE OF ENG. & TECH.,AP,India,avamshireddy@gmail.com

2
Asst.Prof. ECE Department, MAHAVEER INST.OF SCIENCE & TECH,, AP, India, amgothlaxman@gmail.com

3
 Asst.Prof., ECE Department, DVR COLLEGE OF ENG. & TECH., AP, India, laudiya.prakash@gmail.com

4
 Asst.Prof., ECE Department, DVR COLLEGE OF ENG. & TECH., AP, India , satyant234@gmail.com

Abstract
The universal serial bus (USB) transceiver macro cell interface (UTMI) is a two wire, bi-directional serial bus interface. UTMI

consists of transmitting and receiving sections, in which the transmitter of the UTMI sends data to different USB devices through D+

and D- lines whereas the receiver gets data on the same lines.

UTMI is one of the important functional blocks of USB controller, which can transmit and receive data to or from USB devices. There

are three functional blocks present in USB controller; those are Serial Interface Engine (SIE), UTMI and Device Specific Logic

(DSL). The parallel data from SIE is taken into the transmit hold register and this data is sent to transmit shift register from where

the data is converted serially. This serial data is bit stuffed to perform data transitions for clock recovery and NRZI (1) encoding.

Then the encoded data is sent on to the serial bus. When the data is received on the serial bus, it is decoded, bit unstuffed and is sent

to receive shift register. After the shift register is full, the Data is sent to receive hold register.

This presentation reveals the FPGA implementation of UTMI transmission rate providing with USB 2.0 specifications. Further UTMI

has been designed by using VHDL code and simulated, synthesized and programmed to the targeted Spartan family of FPGA in the

Xilinx environment.

Index Terms: INTRODUCTION, USB TRANCIEVER MACROCELL INTERFACE AND DESIGN OF HARDWARE

MODEL

---***---

1. INTRODUCTION

1.1 Introduction

The fig-1 shows the block diagram of USB controller, which

is present in every USB device. There are three major

functional blocks in a USB 2.0controller.The USB 2.0

Transceiver Macrocell Interface (UTMI), the Serial Interface

Engine (SIE), and the device specific logic.

Fig1-Block diagram of USB controller.

UTMI

This block handles the low level USB protocol and signaling.

This includes features such as; data serialization and

deserialization, bit stuffing and clock recovery and

synchronization. The primary focus of this block is to shift the

clock domain of the data from the USB 2.0 rate to one that is

compatible with the general logic in the ASIC.

The UTMI is designed to support HS/FS, FS Only and LS

Only UTM implementations. The three options allow a single

SIE implementation to be used with any speed USB

transceiver. A vendor can choose the transceiver performance

that best meets their needs.

A HS/FS implementation of the transceiver can operate at

either a 480 Mb/s or a 12 Mb/s rate. Two modes of operation

are required to properly emulate High-speed device

connection and suspend/resume features of USB 2.0, as well

as Full-speed connections if implementing a Dual-Mode

device.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 290

FS Only and LS Only UTM implementations do not require

the speed selection signals since there is no alternate speed to

switch to.

Serial Interface Engine

This block can be further sub-divided into 2 types of sub-

blocks; the SIE Control Logic and the Endpoint logic. The SIE

Control Logic contains the USB PID and address recognition

logic, and other sequencing and state machine logic to handle

USB packets and transactions. The Endpoint Logic contains

the endpoint specific logic: endpoint number recognition,

FIFOs and FIFO control, etc. Generally the SIE Control Logic

is required for any USB implementation while the number and

types of endpoints will vary as function of application and

performance requirements.

SIE logic module can be developed by peripheral vendors or

purchased from IP vendors. The standardization of the UTMI

allows compatible SIE VHDL to drop into an ASIC that

provides the macro cell.

Device Specific Logic:

This is the glue that ties the USB interface to the specific

application of the device.

Applications

The UTMI has been developed into a common code

(Generalized USB Transceiver) which can be used for

developing the complete USB device stack.

Some of the Low speed and High speed USB devices, which are

presently in the market, are:

1. Optical Mouse

2. Key Board

3. Printer

4. Scanner

5. Joy Stick

6. Memory Stick

7. Flash Memory

8. Mobiles

9. Video cameras

2. USB TRANCIEVER MACROCELL

INTERFACE (UTMI) Introduction

Universal Serial Bus (USB) Transceiver Macrocell Interface

(UTMI) is one of the most important blocks of USB

Controller. This block handles the low level USB protocol and

signaling. This includes features such as data serialization, de

serialization, bit stuffing, bit de stuffing, Non Return to Zero

Invert on „1‟(NRZI) encoding, decoding, clock recovery and

synchronization. The primary focus of this block is to shift the

clock domain of the data from the USB 2.0 rate to one that this

compatible with the general logic in the ASIC.

Key features of the USB 2.0 Transceiver

 Supports 480 Mbit/s "High Speed" (HS)/ 12 Mbit/s

“Full Speed” (FS), FS Only and "Low Speed" (LS)

Only 1.5 Mbit/s serial data transmission rates.

 Utilizes 8-bit parallel interface to transmit and

receive USB 2.0 cable data

 SYNC/EOP generation and checking

 High Speed and Full Speed operation to support the

development of "Dual Mode" devices

 Data and clock recovery from serial stream on the

USB

 Bit-stuffing/unstuffing; bit stuff error detection

 Holding registers to stage transmit and receive data

 Logic to facilitate Wake Up and Suspend detection

 Ability to switch between FS and HS

terminations/signaling

 Single parallel data clock output with on-chip PLL to

generate higher speed serial data clocks.

2.2 Functional Block Diagram and Description

Fig2- UTMI Functional Block Diagram.

2.3 UTMI Signal Descriptions

The Table-1 gives the summary of system interface signals

those are referred by the SIE and the UTMI. Each of the

signals given in the table 1 is clearly described below.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 291

2.3.1 System Interface Signals

Table-1 System Interface Signals

2.3.2 USB Interface Signals

Table-2 USB Interface Signals

Table-2 gives the summary of USB interface signals. These

are bi-directional signals and they are used to connect the USB

device to the outer world. The data transmission and reception

occur on these two lines. If bit „1‟ is present on DP line, bit „0‟

will present on DM line in the same clock duration. This is

required because if bit „1‟ i.e., +5V is present on DP line, a

magnetic field will be created around the line. This magnetic

field may affect the nearby lines. To compensate the affect of

magnetic field, a bit „0‟ i.e., -5V is present on DM line. The

net effect of the magnetic field will be zero. Thus the noise is

reduced.

2.4 Operational Modes

The OpMode signals are capable of inhibiting normal

operation of the transceiver and evoking special test modes.

The table 3 gives the summary of operational modes. Each of

the signals given in the table 3 is clearly described below.

 There are 3 test modes:

 Normal Operation (0)

 Non-Driving (1)

 Disable Bit Stuffing and NRZI encoding (2)

Table-3 Operational Modes

Mode 0 allows the transceiver to operate with normal USB

data decoding and encoding.

Mode 1 allows the transceiver logic to support a soft

disconnect feature which tri-states both the HS and FS

transmitters, and removes any termination from the USB

making it appear to an upstream port that the device has been

disconnected from the bus.

Mode 2 disables Bit Stuff and NRZI encoding logic so 1's

loaded from the Data In bus becomes 'J's on the DP/DM lines

and 0's become 'K's. Note that this mode affects the automatic

SYNC Pattern and EOP generation by TX Valid. It is disabled

so that Chirps can be generated on the USB. The operation of

the receiver is undefined.

Changing the OP Mode signals under all other conditions,

while the transceiver is receiving or transmitting data will

generate undefined results.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 292

2.5 Bi-directional 8-bit Interface

An option for the UTMI is to attach the block described in the

fig-3below to the 8-bit interface. This option provides an 8-bit

bi-directional bus, minimizing the connection count. When

this option is applied, 8 data lines will be presented by the

transceiver, where Data0-7 is a bi- directional data bus.

If TX Valid is asserted (1) then the signals Data0-7 accepts

transmit data from the SIE. If TX Valid is negated (0) then the

signals Data0-7 present received data to the SIE.

Fig-3 8-Bit Bi-directional Data Bus Interface

2.6 UTM Entity Diagram

The entity diagram of UTMI is shown in the fig- 4. The figure

shows all the signals of UTMI and their direction. All the

input signals to the UTMI are from SIE and all the output

signals are to the SIE.

Fig-4 UTM Entity Diagram

3. DESIGN OF HARDWARE MODEL

The UTMI is divided into two modules, which are the

transmitter module and the receiver module.

3.1 The Transmitter module Specifications

The transmitter module of UTMI has been implemented by

considering the following specifications.

 The SYNC pattern „01111110‟ has to be transmitted

immediately after the transmitter is initiated by the SIE.

 After six consecutive „1‟s occur in the data stream, a zero

to be inserted.

 The data should be encoded using Non Return to Zero

Invert on 1(NRZI -1) encoding technique.

 The EOP pattern two single ended zeros (D+ and D- lines

are carrying zero for two clock cycles) and a bit 1 have to

be transmitted after each packet or after SIE suspends the

transmitter.

The behavior of the Transmit State Machine given by USB 2.0

specifications is described and illustrated in Fig.5

The Reset signal forces the state machine into the Reset state

which negates TX Ready. When Reset is negated the transmit

state machine will enter the TX Wait state.

In the TX Wait state, the transmit state machine looks for the

assertion of TX Valid. When TX Valid is detected, the state

machine will enter the Send SYNC state and begin

transmission of the SYNC pattern.

When the transmitter is ready for the first byte of the packet

(PID), it will enter the TX Data Load state, assert TX Ready

and load the TX Holding Register. The state machine may

enter the TX Data Wait state while the SYNC pattern

transmission is completed.

TXReady is used to throttle transmit data. The state machine

will remain in the TX Data Wait state until the TX Data

Holding register is available for more data. In the TX Data

Load state, the state machine loads the Transmit Holding

register. The state machine will remain in the TX Data Load

state as long as the transmit state machine can empty the TX

Holding Register before the next rising edge of CLK.

When TXValid is negated the transmit state machine enters

the Send EOP state where it sends the EOP. While the EOP is

being transmitted TXReady is negated and the state machine

will remain in the Send EOP state. After the EOP is

transmitted the Transmit State Machine returns to the TX Wait

state.

The summary of the above description is given below.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 293

Fig-5 Transmit state machine

 Transmit must be asserted to enable any

transmissions.

 The SIE asserts TXValid to begin a transmission.

 The SIE negates TXValid to end a transmission.

 After the SIE asserts TXValid it can assume that the

transmission has started when it detects TXReady

asserted.

 The SIE assumes that the UTMI has consumed a data

byte if TXReady and TXValid are asserted.

 TXValid and TXReady are sampled on the rising

edge of CLK.

 The SIE must use LineState to verify a bus Idle

condition before asserting TXValid in the TX Wait

state.

Fig-6 shows the timing relationship between TXValid, DataIn,

TXReady and the transmitted data (DP/DM).

Fig-6 Transmit Timing for a Data packet

The SIE negates TXValid to complete a packet. Once negated,

the Transmit State Machine will never re- assert TXReady

until after the EOP has been loaded into the Transmit Shift

Register.

3.2 The Transmitter Module Design

The transmitter module is designed by considering all the

above specifications. VHDL is used to design the transmitter

module. The transmitter module of the UTMI consists of

various blocks such as SYNC generator, transmit hold and

shift register, bit stuffer, NRZI encoder and EOP generator.

A transmit state machine is developed by considering all the

states given by USB 2.0 transmit state machine. Initially the

transmitter is at Reset state where the reset signal is high. If

reset signal goes low state the state of the transmitter is

changed to TX wait state where it is waiting for assertion of

TX valid signal by the SIE.

3.2.1 SYNC generator

When the TX valid signal is asserted by the SIE, transmit state

machine enters into send Sync state where a signal called of

the clock out side the state machine. When this signal

is enabled sync enable is asserted. This signal is checked at

every rising edge, a sync pattern “01111110” is send to

the NRZI encoder.

3.2.2 Transmit hold and shift register

The data byte placed on the data lines by the SIE sampled by

the UTMI at the rising edge of the clock. For this purpose, an

8-bitvector is declared in the entity declaration of the

transmitter module. This 8-bit vector is considered as transmit

hold and shift register.

The transmit hold and shift register is loaded with 8-bit

parallel data from SIE at the rising edge of the clock. At this

movement the transmit state machine is in Data load state.

After the register is loaded, the data is sent to the other

modules serially. Each bit of the register is sent to the Bit stuff

module. After all the bits are serially sent to the Bit stuff

module, Tx ready signal is asserted by the transmit state

machine. During parallel to serial conversion data, the

transmit state machine is in Data wait state.

3.2.3 EOP Generator

When TX valid signal is negated by the SIE, the transmit state

machine enters into send EOP state where it enables a signal

called eop_enable. This signal is checked out side the state

machine for every clock. If this signal is high then the EOP

pattern: two single ended zeroes (i.e, DP, DM lines contain

zeroes) and a „J‟ (i.e, a „1‟ on DP line and a „0‟ on DM line) is

transmitted on to DP, DM lines.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 294

3.3 The Receiver Module Specification

The receiver module has been implemented by considering the

fallowing specifications.

 When SYNC pattern is detected that should be intimated

to the SIE.

 If a zero is not detected after six consecutive „1‟s an error

should be reported to the SIE.

 When EOP pattern is detected that should be intimated to

the SIE.

The behavior of the Receive State Machine is illustrated in

Fig-7

The assertion of Reset will force the Receive State Machine

into the Reset state. The Reset state negates RXActive and

RXValid. When the Reset signal is negated the Receive State

Machine enters the RX Wait state and starts looking for a

SYNC pattern on the USB. When a SYNC pattern is detected

the state machine will enter the Strip SYNC state and assert

RXActive. The length of the received SYNC pattern varies

and can be up to 32 bits long. As a result, the state machine

may remain in the Strip SYNC state for several byte times

before capturing the first byte of data and entering the RX

Data state.

After 8 bits of valid serial data is received the state machine

enters the RX Data state, where the data is loaded into the RX

Holding Register on the rising edge of CLK and RXValid is

asserted. The SIE must clock the data off the DataOut bus on

the next rising edge of CLK.

Stuffed bits are stripped from the data stream. Each time 8

stuffed bits are accumulated the state machine will enter the

RX Data Wait state, negating RXValid thus skipping a byte

time.

When the EOP is detected the state machine will enter the

Strip EOP state and negate RXActive and RXValid. After the

EOP has been stripped the Receive State Machine will reenter

the RX Wait state and begin looking for the next packet.

If a Receive Error is detected, the Error State is entered and

RXError is asserted. Then either the Abort 1 State is entered

where RXActive, RXValid, and RXError are negated, or the

Abort 2 State is entered where only RXValid, and RXError are

negated. The Abort 1 State proceeds directly to the RX Wait

State, while Abort 2 State proceeds to the Terminate State

after an Idle bus state is detected on DP and DM. The

Terminate State proceeds directly to the RX Wait State.

When the last data byte is clocked off the DataOut bus the SIE

must also capture the state of the RXError signal. The

description of the receiver given above is summarized below.

Fig7 Receive state machine.

 RXActive and RXValid are sampled on the rising

edge of CLK.

 In the RX Wait state the receiver is always looking

for SYNC.

 The Macrocell asserts RXActive when SYNC is

detected (Strip SYNC state).

 The Macrocell negates RXActive when an EOP is

detected (Strip EOP state).

 When RxActive is asserted, RXValid will be asserted

if the RX Holding Register is full.

 RXValid will be negated if the RX Holding Register

was not loaded during the previous byte time. This

will occur if 8 stuffed bits have been accumulated.

 The SIE must be ready to consume a data byte if

RXActive and RXValid are asserted (RX Data state).

 In FS mode, if a bit stuff error is detected then the

Receive State Machine will negate RXActive and

RXValid, and return to the RXWait state.

Fig-7shows the timing relationship between the received data

(DP/DM) , RXValid, RXActive, RXError and DataOut

signals.

Fig-8 Receive Timing for Data Packet

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 295

3.4 The Receiver Design

The receiver module is designed by considering all the above

specifications. VHDL is used to design the receiver module.

The receiver module of the UTMI consists of various blocks

such as SYNC detector, NRZI decoder, bit unstuffer, receive

shift and hold Register and EOP detector.

A receive state machine is developed by considering all the

states given by USB 2.0 receive state machine. Initially the

receiver is at Reset state where the reset signal is high and RX

active and RX valid signals are low. If reset signal goes low

the state of the receiver is changed to RX wait state where it is

waiting for SYNC pattern.

3.4.1 SYNC Detector

When the receiver detects encoded SYNC pattern

“01010100”, the Receive state machine will enter into strip

sync state where the SYNC pattern is stripped off. To detect

the SYNC pattern a state machine is developed. It checks

every bit for every rising edge of the clock. If the pattern is

detected, a signal called sync detected is enabled. This signal

is checked by the Receive state machine. If the signal is high,

the Receive state machine will enter into strip sync state where

RX active signal is asserted and the state machine will enter

into RX data state.

3.4.2 NRZI Decoder

The received data on DP, DM lines are NRZI decoded. The

NRZI Decoder simply XOR the present bit with the

provisionally received bit. During NRZI decoding, the receive

state machine is in RX wait state.

3.4.3 Receive Shift and Hold Register

The serial data received from the bit Unstuffer is shifted into

the receive shift register. After the shift Register is full, it is

held there for one clock duration and then the data is placed on

to the data out bus. This 8-bit data is sampled by the SIE at the

next rising edge of the clock during shifting, the receive state

machine is in RX data wait state. During holding, the receive

state machine is in RX data state where it asserts RX valid

signal.

3.4.4 EOP Detector

A state machine is developed for EOP detection, which is

invoked at every rising edge of the clock. When two single

ended zeroes fallowed by a „J‟ state is detected, it asserts a

signal called eop_detect which is checked by the Receive state

machine at every rising edge of the clock. When this signal is

high, the receive state machine will enter in to Strip eop state

where the EOP pattern is stripped off and RX active, RX valid

signals are negated. At the next rising edge of the clock. The

Receive state machine will enter into the RX wait state.

3.5 GENERAL IMPLEMENTATION FLOW

The generalized implementation flow diagram of the project is

represented as follows.

Fig-9 General Implementation Flow Diagram

Initially the market research should be carried out which

covers the previous version of the design and the current

requirements on the design. Based on this survey, the

specification and the architecture must be identified. Then the

RTL modeling should be carried out in VHDL with respect to

the identified architecture. Once the RTL modeling is done, it

should be simulated and verified for all the cases. The

functional verification should meet the intended architecture

and should pass all the test cases.

Once the functional verification is clear, the RTL model will

be taken to the synthesis process. Three operations will be

carried out in the synthesis process such as

 Translate

 Map

 Place and Route

The developed RTL model will be translated to the

mathematical equation format which will be in the

understandable format of the tool. These translated equations

will be then mapped to the library that is, mapped to the

hardware. Once the mapping is done, the gates were placed

and routed. Before these processes, the constraints can be

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 03 | Nov-2012, Available @ http://www.ijret.org 296

given in order to optimize the design. Finally the BIT MAP

file will be generated that has the design information in the

binary format which will be dumped in the FPGA board.

CONCLUSIONS

The individual modules of UTMI have been designed,

verified functionally using VHDL simulator.

The UTMI Transmitter is capable of converting parallel data

into serial bits, performing bit stuffing and NRZI encoding.

The UTMI Receiver is capable of performing NRZI decoding

bitunstuffing and converting serial bits into parallel data. The

functional simulation has been successfully carried out. The

design has been synthesized using FPGA technology from

Xilinx. This design is targeted to the device family→spartan2,

device→xc2s30, package→cs144 and speed grade→ -

5.Thedevice belongs to the Vertex-E group of FPGAs from

Xilinx.

REFERENCES:

[1]. USB 2.0 Specification, April 27, 2000

[2]. USB 2.0 Transceiver Macrocell Interface (UTMI)

Specification, version 1.05, March 29, 2001

[3]. On-The-Go Supplement to the USB 2.0 Specification,

revision 1.0, Dec 18, 2001

[4]. UTMI+ Specification, revision 0.9, February 21, 2003

[5]. VHDL With Example Douglas .L .Perry

[6]. Data and Computer Communications by William

Stallings

[7]. Computer Networks by Andrew S.Tannenbaum

[8]. www.opencore.org

[9]. www.digitalcoredesign.org

BIOGRAPHIES:

A.VAMSHIDHAR REDDY received the

M.TECH degree from Bandari Srinivas

Institute Of Tech.,Chevella, Hyderabad

Currently he is working as an assoc. prof.

in RRS College of Eng. And Tech.,

Hyderabad

A.LAXMAN received the M.TECH

degree from Srinidhi Institute Of

Technology, Ghatkesar, Hyderabad

Currently he is working as an asst. Prof. in

MAHAVEER Inst. Of Science and

Technology, Hyderabad

L.PRAKASH received the M.TECH

degree from TRR College of Eng. And

Tech.,Hyderabad

Currently he is working as an assoc. prof.

in DVR College of Eng. And

Tech.,Hyderabad

T.SATYANARAYANA received the

M.TECH degree from JBIT,Moinabad,

Hyderabad. Currently he is working as an

assoc. prof. in DVR College of Eng. And

Tech,Hyderabad

