
IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 29

TEXT FILE ENCRYPTION USING FFT TECHNIQUE IN Lab VIEW 8.6

Sudha Rani. K
1
, T. C. Sarma

2
, K. Satya Prasad

3

1
DEPT of EIE, VNRVJIET, Hyderabad, India, sudhasarah@gmail.com

2
Former Deputy Director, NRSA, Hyderabad, India, sarma_tc@yahoo.com

3
Rector, JNTU Kakinada University, Kakinada, India, prasad_kodati@yahoo.com

Abstract
Encryption has always been a very important part of military communications. Here we deal with digital transmission technique.

Digital transmission is always much more efficient than analog transmission, and it is much easier for digital encryption techniques to

achieve a very high degree of security. Of course, this type of technique is still not quite compatible with today’s technical

environment, i.e. most of the telephone systems are still analog instead of digital; most practical digitizers still require a relatively

high bit rate which cannot be transmitted via standard analog telephone channels; and low bit rate speech digitizers still imply

relatively high complexity and poor quality. Digital transmission adopts “Scrambling” technique. Scrambling methods are considered

as important methods that provide the communication systems a specified degree of security, depending on the used technique to

implement the scrambling method. There are many traditional scrambling methods used in single dimension such as time or frequency

domain scrambling.

Index Terms: Encryptor, Decryptor, Fast Fourier transforms (FFT)

---***---

1. INTRODUCTION

Encryption has long been used by militaries and governments

to facilitate secret communication. It is now commonly used

in protecting information within many kinds of civilian

systems. For example, the Computer Security Institute

reported that in 2007, 71% of companies surveyed utilized

encryption for some of their data in transit, and 53% utilized

encryption for some of their data in storage. Encryption can be

used to protect data "at rest", such as files on computers and

storage devices (e.g. USB flash drives). In recent years there

have been numerous reports of confidential data such as

customers' personal records being exposed through loss or

theft of laptops or backup drives. Encrypting such files at rest

helps protect them should physical security measures fail.

Digital rights management systems which prevent

unauthorized use or reproduction of copyrighted material and

protect software against reverse engineering are another

somewhat different example of using encryption on data at

rest.

Encryption is also used to protect data in transit, for example

data being transferred via networks (e.g. the Internet, e-

commerce), mobile telephones, wireless microphones,

wireless intercom systems, Bluetooth devices and bank

automatic teller machines. There have been numerous reports

of data in transit being intercepted in recent years. Encrypting

data in transit also helps to secure it as it is often difficult to

physically secure all access to networks. Encryption, by itself,

can protect the confidentiality of messages, but other

techniques are still needed to protect the integrity and

authenticity of a message; for example, verification of a

message authentication code (MAC) or a digital signature.

Standards and cryptographic software and hardware to

perform encryption are widely available, but successfully

using encryption to ensure security may be a challenging

problem. A single slip-up in system design or execution can

allow successful attacks. Sometimes an adversary can obtain

unencrypted information without directly undoing the

encryption.

2. FAST FOURIER TRANSFORM (FFT)

In this section we present several methods for computing the

DFT efficiently. In view of the importance of the DFT in

various digital signal processing applications, such as linear

filtering, correlation analysis, and spectrum analysis, its

efficient computation is a topic that has received considerable

attention by many mathematicians, engineers, and applied

scientists. Basically, the computational problem for the DFT is

to compute the sequence {X(k)} of N complex-valued

numbers given another sequence of data {x(n)} of length N,

according to the formula

In general, the data sequence x(n) is also assumed to be

complex valued. Similarly, The IDFT becomes

http://en.wikipedia.org/wiki/Computer_Security_Institute
http://en.wikipedia.org/wiki/Computers
http://en.wikipedia.org/wiki/USB_flash_drives
http://en.wikipedia.org/wiki/Digital_rights_management
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/E-commerce
http://en.wikipedia.org/wiki/E-commerce
http://en.wikipedia.org/wiki/Mobile_telephone
http://en.wikipedia.org/wiki/Wireless_microphone
http://en.wikipedia.org/wiki/Wireless_intercom
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Automatic_teller_machine
http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Cryptographic_software

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 30

Since DFT and IDFT involve basically the same type of

computations, our discussion of efficient computational

algorithms for the DFT applies as well to the efficient

computation of the IDFT.

We observe that for each value of k, direct computation

of X(k) involves N complex multiplications (4N real

multiplications) and N-1 complex additions (4N-2 real

additions). Consequently, to compute all N values of the DFT

requires N
 2
 complex multiplications and N

 2
-N complex

additions.

Direct computation of the DFT is basically inefficient

primarily because it does not exploit the symmetry and

periodicity properties of the phase factor WN. In particular,

these two properties are :

The computationally efficient algorithms described in this

section, known collectively as fast Fourier transform (FFT)

algorithms, exploit these two basic properties of the phase

factor.

2.1Radix-2 FFT Algorithms

Let us consider the computation of the N = 2
v
 point DFT by

the divide-and conquer approach. We split the N-point data

sequence into two N/2-point data sequences f1(n) and f2(n),

corresponding to the even-numbered and odd-numbered

samples of x(n), respectively, that is,

Thus f1(n) and f2(n) are obtained by decimating x(n) by a

factor of 2, and hence the resulting FFT algorithm is called

a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFT's

of the decimated sequences as follows:

But WN
2
 = WN/2. With this substitution, the equation can be

expressed as

Where F1(k) and F2(k) are the N/2-point DFTs of the

sequences f1(m) and f2(m), respectively.

Since F1(k) and F2(k) are periodic, with period N/2, we

have F1(k+N/2) = F1(k) and F2(k+N/2) = F2(k). In addition, the

factor WN
k+N/2

 = -WN
k
. Hence the equation may be expressed

as

We observe that the direct computation of F1(k) requires

(N/2)
2
 complex multiplications. The same applies to the

computation of F2(k). Furthermore, there are N/2 additional

complex multiplications required to compute WN
k
F2(k). Hence

the computation of X(k) requires 2(N/2)
2
 +N/2 = N

2
/2 + N/2

complex multiplications. This first step results in a reduction

of the number of multiplications from N
 2

to N
2
/2 + N/2,

which is about a factor of 2 for N large.

Figure-1.1: First step in the decimation-in-time algorithm.

By computing N/4-point DFTs, we would obtain the N/2-point

DFTs F1(k) and F2(k) from the relations

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 31

The decimation of the data sequence can be repeated again

and again until the resulting sequences are reduced to one-

point sequences. For N= 2
v
, this decimation can be performed

v = log2N times. Thus the total number of complex

multiplications is reduced to (N/2)log2N. The number of

complex additions is Nlog2N.

For illustrative purposes, Figure 1.2 depicts the computation

of N = 8 point DFT. We observe that the computation is

performed in three stages, beginning with the computations of

four two-point DFTs, then two four-point DFTs, and finally,

one eight-point DFT. The combination for the smaller DFTs to

form the larger DFT is illustrated in Figure 2.3 for N = 8.

Figure -1.2: Three stages in the computation of an N = 8-

point DFT.

Figure -1.3 Eight-point decimation-in-time FFT algorithms.

Figure-1.4: basic butterfly computations in the decimation-in-

time FFT algorithm.

An important observation is concerned with the order of the

input data sequence after it is decimated (v-1) times. For

example, if we consider the case where N = 8, we know that

the first decimation yields the sequence x(0), x(2), x(4), x(6),

x(1), x(3), x(5), x(7), and the second decimation results in the

sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3),

x(7). This shuffling of the input data sequence has a well-

defined order as can be ascertained from observing Figure1.5,

which illustrates the decimation of the eight-point sequence.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 32

Figure -1.5: Shuffling of the data and bit reversal.

Another important radix-2 FFT algorithm, called the

decimation-in-frequency algorithm, is obtained by using the

divide-and-conquer approach. To derive the algorithm, we

begin by splitting the DFT formula into two summations, one

of which involves the sum over the first N/2 data points and

the second sum involves the last N/2 data points. Thus we

obtain

Now, let us split (decimate) X(k) into the even- and odd-

numbered samples. Thus we obtain

where we have used the fact that WN
2
 = WN/2

The computational procedure above can be repeated through

decimation of the N/2-point DFTs X(2k) and X(2k+1). The

entire process involves v = log2N stages of decimation, where

each stage involves N/2 butterflies of the type shown in

Figure2.7. Consequently, the computation of the N-point DFT

via the decimation-in-frequency FFT requires (N/2)log2N

complex multiplications and Nlog2N complex additions, just

as in the decimation-in-time algorithm. For illustrative

purposes, the eight-point decimation-in-frequency algorithm is

given in Figure 1.8.

Figure-1.6: First stage of the decimation-in-frequency FFT

algorithm.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 33

Figure-1.7: Basic butterfly computation in the decimation in

frequency.

We observe from Figure TC.3.8 that the input data x(n) occurs

in natural order, but the output DFT occurs in bit-reversed

order.

Figure-1.8 N=8-piont decimation-in-frequency FFT

algorithm.

We also note that the computations are performed in place.

However, it is possible to reconfigure the decimation-in-

frequency algorithm so that the input sequence occurs in bit-

reversed order while the output DFT occurs in normal order.

Furthermore, if we abandon the requirement that the

computations be done in place, it is also possible to have both

the input data and the output DFT in normal order.

3. ENCRYPTION:

Encryption is the conversion of data into a form, called a

cipher text that cannot be easily understood by unauthorized

people. Decryption is the process of converting encrypted data

back into its original form, so it can be understood.

The use of encryption/decryption is as old as the art of

communication. In wartime, a cipher, often incorrectly called

a code, can be employed to keep the enemy from obtaining the

contents of transmissions. (Technically, a code is a means of

representing a signal without the intent of keeping it secret;

examples are Morse code and ASCII.) Simple ciphers include

the substitution of letters for numbers, the rotation of letters in

the alphabet, and the "scrambling" of voice signals by

inverting the sideband frequencies. More complex ciphers

work according to sophisticated computer algorithms that

rearrange the data bits in digital signals .Encryption finds its

use in many scenarios as follows:

Figure -3.1: Uses of encryption methods

Encryption refers to algorithmic schemes that encode plain

text into non-readable form or cipher text, providing privacy.

The receiver of the encrypted text uses a "key" to decrypt the

message, returning it to its original plain text form. The key is

the trigger mechanism to the algorithm. Until the advent of the

Internet, encryption was rarely used by the public, but was

largely a military tool. Today, with online marketing, banking,

healthcare and other services, even the average householder is

aware of encryption. As more people realize the open

nature of the Internet, email and instant messaging,

encryption will undoubtedly become more popular.

Without encryption, information passed on the Internet

is not only available for virtually anyone to snag and

read, but is often stored for years on servers that can

change hands or become compromised in any number of

ways. For all of these reasons encryption is a goal worth

pursuing. In order to easily recover the contents of an

encrypted signal, the correct decryption key is required. The

key is an algorithm that undoes the work of the encryption

algorithm. Alternatively, a computer can be used in an attempt

to break the cipher. The more complex the encryption

algorithm, the more difficult it becomes to eavesdrop on the

communications without access to the key. Often there has

been a need to protect information from 'prying eyes'. In the

electronic age, information that could otherwise benefit or

educate a group or individual can also be used against such

groups or individuals. Industrial espionage among highly

competitive businesses often requires that extensive security

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 34

measures be put into place. And, those who wish to exercise

their personal freedom, outside of the oppressive nature of

governments, may also wish to encrypt certain information to

avoid suffering the penalties of going against the wishes of

those who attempt to control. Still, the methods of data

encryption and decryption are relatively straightforward, and

easily mastered. I have been doing data encryption since my

college days, when I used an encryption algorithm to store

game programs and system information files on the university

mini-computer, safe from 'prying eyes'. These were files that

raised eyebrows amongst those who did not approve of such

things, but were harmless. I was occasionally asked what this

"rather large file" contained, and I once demonstrated the

program that accessed it, but you needed a password to get to

'certain files' nonetheless. And, some files needed a separate

encryption program to decipher them.

Encryption/decryption is especially important in wireless

communications. This is because wireless circuits are easier to

tap than their hard-wired counterparts. Nevertheless,

encryption/decryption is a good idea when carrying out any

kind of sensitive transaction, such as a credit-card purchase

online, or the discussion of a company secret between

different departments in the organization. The stronger the

cipher -- that is, the harder it is for unauthorized people to

break it -- the better, in general. However, as the strength of

encryption/decryption increases, so does the cost. In recent

years, a controversy has arisen over so-called strong

encryption. This refers to ciphers that are essentially

unbreakable without the decryption keys. While most

companies and their customers view it as a means of keeping

secrets and minimizing fraud, some governments view strong

encryption as a potential vehicle by which terrorists might

evade authorities. These governments, including that of the

United States, want to set up a key-escrow arrangement. This

means everyone who uses a cipher would be required to

provide the government with a copy of the key. Decryption

keys would be stored in a supposedly secure place, used only

by authorities, and used only if backed up by a court order.

Opponents of this scheme argue that criminals could hack into

the key-escrow database and illegally obtain, steal, or alter the

keys. Supporters claim that while this is a possibility,

implementing the key escrow scheme would be better than

doing nothing to prevent criminals from freely using

encryption/decryption.

3.1 Types of Encryption Methods

There are three basic encryption methods: hashing,

symmetric cryptography, and asymmetric cryptography. Each

of these encryption methods have their own uses, advantages,

and disadvantages. All three of these encryption methods use

cryptography, or the science of scrambling data.

Cryptography is used to change readable text, called plaintext,

into an unreadable secret format, called cipher text, using a

process called encryption. Encrypting data provides additional

benefits besides protecting the confidentiality of data. Other

benefits include ensuring that messages have not been altered

during transit and verifying the identity of the message sender.

All these benefits can be realized by using basic encryption

methods.

Hashing:

The first encryption method, called hashing, creates a unique

fixed length signature of a group of data. Hashes are created

with an algorithm, or hash function, and are used to compare

sets of data. Since a hash is unique to a specific message, any

changes to that message would result in a different hash,

thereby alerting a user to potential tampering.

A hash algorithm, also known as a hash function, is a

mathematical procedure used in computer programming to

turn a large section of data into a smaller representational

symbol, known as a hash key. The major use of hash

algorithms occurs in large databases of information. Each

collection of data is assigned a hash key, which is a short

symbol or code that represents it. When a user needs to find

that piece of data, he inputs the symbol or code and the

computer displays the full data piece.

For hashing, as this process is called, to work it needs a hash

function or hash algorithm. This tells the computer how to

take the hash key and match it with a set of data it represents.

Areas in the computer program known as slots or buckets

store information and each key links to a specific slot or

bucket. The entire process is contained within a hash

table or hash map. This table records data and the

matching keys that correspond to it. It then uses a hash

algorithm to connect a key to a piece of data when the

user requests it.

A key difference between a hash and the other two encryption

methods is that once the data is encrypted, the process cannot

be reversed or deciphered. This means that even if a potential

attacker were able to obtain a hash, he would not be able to

use a decryption method to discover the contents of the

original message. Some common hashing algorithms are

Message Digest 5 (MD5) and Secure Hashing Algorithm

(SHA).

3.1.1 Symmetric Cryptography

Symmetric cryptography, which is also called private-key

cryptography, is the second encryption method. The term

"private key" comes from the fact that the key used

to encrypt and decrypt data must remain secure because

anyone with access to it can read the coded messages. This

encryption method can be categorized as either a stream

http://www.wisegeek.com/what-is-encryption.htm

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 35

cipher or a block cipher, depending upon the amount of data

being encrypted or decrypted at a time. A stream cipher

encrypts data one character at a time while a block cipher

processes fixed chunks of data. Common symmetric

encryption algorithms include Data Encryption Standard

(DES), Advanced Encryption Standard (AES), International

Data Encryption Algorithm (IDEA), and Blowfish. For

symmetric key ciphers, there are basically two types: BLOCK

CIPHERS, in which a fixed length block is encrypted, and

STREAM CIPHERS, in which the data is encrypted one 'data

unit' (typically 1 byte) at a time, in the same order it was

received in. Fortunately, the simplest of all of the symmetric

key 'stream cipher' methods is the TRANSLATION TABLE

(or 'S table'), which should easily meet the performance

requirements of even the most performance-intensive

application that requires data to be encrypted. In a translation

table, each 'chunk' of data (usually 1 byte) is used as an offset

within one or more arrays, and the resulting 'translated' value

is then written into the output stream. The encryption and

decryption programs would each use a table that translates to

and from the encrypted data. 80x86 CPU's have an instruction

'XLAT' that lends itself to this purpose.

While translation tables are very simple and fast, the down

side is that once the translation table is known, the code is

broken. Further, such a method is relatively straightforward

for code breakers to decipher - such code methods have been

used for years, even before the advent of the computer. Still,

for general "unread ability" of encoded data, without adverse

effects on performance, the 'translation table' method lends

itself well. A modification to the 'translation table' uses 2 or

more tables, based on the position of the bytes within the data

stream, or on the data stream itself. Decoding becomes more

complex, since you have to reverse the same process reliably.

But, by the use of more than one translation table, especially

when implemented in a 'pseudo-random' order, this adaptation

makes code breaking relatively difficult. An example of this

method might use translation table 'A' on all of the 'even'

bytes, and translation table 'B' on all of the 'odd' bytes. Unless

a potential code breaker knows that there are exactly 2 tables,

even with both source and encrypted data available the

deciphering process is relatively difficult.

Similar to using a translation table, 'data repositioning' lends

itself to use by a computer, but takes considerably more time

to accomplish. This type of cipher would be a trivial example

of a block cipher. A buffer of data is read from the input, then

the order of the bytes (or other 'chunk' size) is rearranged, and

written 'out of order'. The decryption program then reads this

back in, and puts them back 'in order'. Often such a method is

best used in combination with one or more of the other

encryption methods mentioned here, making it even more

difficult for code breakers to determine how to decipher your

encrypted data. As an example, consider an anagram. The

letters are all there, but the order has been changed. Some

anagrams are easier than others to decipher, but a well written

anagram is a brain teaser nonetheless, especially if it's

intentionally misleading.

High entropy data is difficult to extract information from, and

the higher the entropy, the better the cipher. So, if you rotate

the words or bytes within a data stream, using a method that

involves multiple and variable direction and duration of

rotation, in an easily reproducible pattern, you can quickly

encode a stream of data with a method that can be nearly

impossible to break. Further, if you use an 'XOR mask' in

combination with this ('flipping' the bits in certain positions

from 1 to 0, or 0 to 1) you end up making the code breaking

process even more difficult. The best combination would also

use 'pseudo random' effects, the easiest of which might

involve a simple sequence like Fibonacci numbers, which can

appear 'pseudo-random' after many iterations of 'modular'

arithmetic (i.e. math that 'wraps around' after reaching a limit,

like integer math on a computer). The Fibonacci sequence

'1,1,2,3,5,...' is easily generated by adding the previous 2

numbers in the sequence to get the next. Doing modular

arithmetic on the result and operating on multiple byte

sequences (using a prime number of bytes for block rotation,

as one example) would make the code breaker's job even more

difficult, adding the 'pseudo-random' effect that is easily

reproduced by your decryption program.

3.1.2 Asymmetric Cryptography

Asymmetric or public key, cryptography is the last encryption

method. This type of cryptography uses two keys, a private

key and a public key, to perform encryption and decryption.

The use of two keys overcomes a major weakness in

symmetric key cryptography in that a single key does not need

to be securely managed among multiple users. In asymmetric

cryptography, a public key is freely available to everyone

while the private key remains with receiver of cipher text to

decrypt messages. Algorithms that use public key

cryptography include RSA and Diffie-Hellman.

The advantage of asymmetric over symmetric key

encryption, where the same key is used to encrypt and

decrypt a message, is that secure messages can be sent

between two parties over a non-secure communication

channel without initially sharing secret information. The

disadvantages are that encryption and decryption is slow,

and cipher text potentially may be hacked by a

cryptographer given enough computing time and power.
One very important feature of a good encryption scheme is the

ability to specify a 'key' or 'password' of some kind, and have

the encryption method alter itself such that each 'key' or

'password' produces a unique encrypted output, one that also

requires a unique 'key' or 'password' to decrypt. This can either

be a symmetric or asymmetric key. The popular 'PGP' public

key encryption, and the 'RSA' encryption that it's based on,

uses an 'asymmetrical' key, allowing you to share the 'public'

encryption key with everyone, while keeping the 'private'

http://www.wisegeek.com/what-is-encryption.htm

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 36

decryption key safe. The encryption key is significantly

different from the decryption key, such that attempting to

derive the private key from the public key involves too many

hours of computing time to be practical. It would NOT be

impossible, just highly unlikely, which is 'pretty good'. There

are few operations in mathematics that are truly 'irreversible'.

In nearly all cases, the commutative property or an 'inverse'

operation applies. if an operation is performed on 'a', resulting

in 'b', you can perform an equivalent operation on 'b' to get 'a'.

In some cases you may get the absolute value (such as a

square root), or the operation may be undefined (such as

dividing by zero). However, it may be possible to base an

encryption key on an algorithm such that you cannot perform

a direct calculation to get the decryption key. An operation

that would cause a division by zero would PREVENT a public

key from being directly translated into a private key. As such,

only 'trial and error' (otherwise known as a 'brute force' attack)

would remain as a valid 'key cracking' method, and it would

therefore require a significant amount of processing time to

create the private key from the public key.

In the case of the RSA encryption algorithm, it uses very large

prime numbers to generate the public key and the private key.

Although it would be possible to factor out the public key to

get the private key (a trivial matter once the 2 prime factors

are known), the numbers are so large as to make it very

impractical to do so. The encryption algorithm itself is ALSO

very slow, which makes it impractical to use RSA to encrypt

large data sets. So PGP (and other RSA-based encryption

schemes) encrypt a symmetrical key using the public key, then

encrypt the remainder of the data with a faster algorithm using

the symmetrical key. The symmetrical itself key is randomly

generated, so that the only (theoretical) way to get it would be

by using the private key to decrypt the RSA-encrypted

symmetrical key.

Example: Suppose you want to encrypt data (let's say this

web page) with a key of 12345. Using your public key, you

RSA-encrypt the 12345, and put that at the front of the data

stream (possibly followed by a marker or preceded by a data

length to distinguish it from the rest of the data). THEN, you

follow the 'encrypted key' data with the encrypted web page

text, encrypted using your favorite method and the key

'12345'. Upon receipt, the decrypt program looks for (and

finds) the encrypted key, uses the 'private key' to decrypt it,

and gets back the '12345'. It then locates the beginning of the

encrypted data stream, and applies the key '12345' to decrypt

the data. The result: a very well protected data stream that is

reliably and efficiently encrypted, transmitted, and decrypted.

4. LABVIEW INTRODUCTION

Lab VIEW (Laboratory Virtual Instrumentation Engineering

Workbench) is a platform and development environment for a

visual programming language from National Instruments. The

graphical language is named "G". Lab VIEW is commonly

used for data acquisition, instrument control, and industrial

automation on a variety of platforms including Microsoft

Windows, various flavors of UNIX, Linux, and Mac OS. The

latest version of Lab VIEW is version 8.6.1, released in

February of 2009.

Lab VIEW is a program development application, much like C

or FORTRAN. Lab VIEW is, however, different from those

applications in one important aspect. Other programming

systems use text-based languages to create lines of code, while

Lab VIEW uses a graphical programming language, G, to

create programs in block diagram form.

Lab VIEW, like C or FORTRAN, is a general-purpose

programming system with extensive libraries of functions for

many programming tasks. Lab VIEW includes libraries for

data acquisition, data analysis, data presentation, and data

storage. A Lab VIEW program is called a virtual instrument

(VI) because it‟s appearance and operation can imitate an

actual instrument.

It is specifically designed to take measurements, analyze data

and present results to the user. It has such a versatile graphical

user interface and is easy to program with, it is also ideal for

simulations, presentation of ideas and general programming.

Academic campuses worldwide use it to deliver project-based

learning. Lab VIEW offers unrivaled integration with

thousands of hardware devices and provides hundreds of built-

in libraries for advanced analysis and data visualization. With

the intuitive nature of the graphical programming

environment, we can:

 Visualize and explore theoretical concepts through

interactive simulations and real-world signals.

 Design projects in applications such as measurement,

control, embedded, signal processing, and

communication.

 Compute, simulate, and devise solutions to homework

problems.

5. WORKING

The basic operation of the project designed can be illustrated

as a process of encryption in encryptor module, transmitted

through a communication medium to the decryptor module

and the retrieval of the original text file at the output of

decryptor module. The type of encryption method

implemented in this application is a mixed type of Symmetric

and Asymmetric Encryption. The various concepts holding as

keys in the Encryption procedure one of them being the

scrambling pattern needs to be implemented exactly in

reversal order to decrypt the data which serves the purpose of

symmetric method and availability of the users to login with

different ids at encryptor and decryptor module serves the

asymmetric method. Hence the encryption method

implemented is of both the types. As described above the

operation of the application is among the two vital modules

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 37

.The following diagram gives the illustration. The encryption

and decryption process takes place in two modules of the

project designed. The two modules in the project designed are:

1. Encryptor module

2. Decryptor module

5.1 Encryptor Module

The Encryptor module is the vital part of the application

where the input text file is received for encryption. The

Encryptor module designed for the application avail the

cryptographer with user friendly and security options. The

user friendly options provided by the programmer include the

managing of the appropriate visibility of the login id options.

The encryptor model provides the facility of creating a

username and password in particular at the encryptor to

proceed with the process of encryption. The Username and

Password provides the security from any other person other

than the assigned cryptographer to use the application.

The various user friendly options provided in using the login

id mainly concerned to its appropriate timely visibility and

ineligible logins using default null usernames and passwords.

A sequence of coding has been done for proper operation of

the username and password. Initially, the input for the

username and the password and maintained at the null string

or the empty space where the user could enter his username

and password and the input text box, which shows the text

present in the input text file which needs to be encrypted, is

maintained empty and visible for the user. The usernames and

passwords of eligible users registered are arranged as an array

of usernames and passwords. Hence a case always arises

where the zero index of the array of strings is an empty string

and an unassigned user can login with empty strings and such

a possibility is avoided with proper coding. After entering the

username and password, an OK button is provided whose

operation would decide the further proceedings into the

application. When OK button is pressed or its state is changed

after entering the login id details it further continues its

operation of defining the user whether a valid one or an

invalid one. Until the OK button is used even though after

entering the details there would be no further action. Once the

OK button is used the step executes, where it is checked

whether the username matches with password of the

concerned user. If an ineligible detail is entered the user will

be provided his state as invalid user and once both the details

match with database the application leads the user to further

operation where the user is directed for the procedure of

encryption. On the display the once a valid user enters the

username, password and OK button disappear to avoid any

confusion. Once the user login is done and procedure is

completed a dialog showing encryption successful is shown

and directed to the empty username and password blocks with

OK button.

5.2 Flow Diagram of Encryption

The flow diagram of the encryption process in the encryptor

module is:

Figure - 5.1: Flow diagram of the encryption process

The above shows the flow diagram of the encryption process.

Initially, the user needs to use the valid login id details to

begin the application .In case of unknown details particular

IFFT

(Inverse Fast Fourier Transform)

FFT

(Fast Fourier Transform)

Descrambling technique

Parallel To serial

Serial to parallel

Decrypted file

Extraction of characters from the

input file

Input of the path of the encrypted files

received from the encryptor

USERNAME & PASSWORD

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 38

user will be regarded an invalid user. Once, the user has

logged in the application shows a browsing window to select a

particular text file which needs to be encrypted and secured

for further purpose. The user can browse for the path of the

file and select it. Later, the application requests the user to

create two empty files and provide its path in particular

browsing windows to store the encrypted data after the

encryption of the input text file. The characters from the input

text file are extracted using the “Read from text file” function

to encrypt. After the extraction of the characters the “string to

array” function is used to assign every available alphabets and

characters their respective ASCII codes.

5.3. ASCII Codes

The American Standard Code for Information Interchange is a

character-encoding scheme originally based on the English

alphabet. ASCII codes represent text in computers,

communications equipment, and other devices that use text.

Most modern character-encoding schemes are based on

ASCII, though they support many additional characters.

ASCII developed from telegraphic codes. Its first commercial

use was as a seven-bit teleprinter code promoted by Bell data

services. Work on the ASCII standard began on October 6,

1960, with the first meeting of the American Standards

Association's (ASA) X3.2 subcommittee. The first edition of

the standard was published during 1963, a major revision

during 1967, and the most recent update during 1986.

Compared to earlier telegraph codes, the proposed Bell code

and ASCII were both ordered for more convenient sorting

(i.e., alphabetization) of lists and added features for devices

other than teleprinters.

After the conversion of characters into ASCII codes .the series

of data available needs to be converted into a parallel blocks

OK data, each block containing 8 bits of data as the Fast

Fourier Transform used for domain conversion is an algorithm

implemented for input of 8 bits. For such a specific serial-to-

parallel conversion a serial to parallel converter is designed as

,All the data available is placed in a “for Loop” whose value

of N fixed to the value of the total number of elements present

in the input file divided by eight so that those many number of

blocks of 8 bits are formed. The number elements present in

the input file is known using “string length” function and a

“divide” with constant value eight to give the value to N. Later

the array function “Array Subset” is used to form the arrays of

8 bits and input for length parameter in this function is given

by the iteration value and a “multiply” function with constant

eight. Then an “Array to Cluster” is used to give input to the

FFT algorithm which converts domain from time domain to

frequency domain. The outputs of the FFT conversion are

scrambled using scrambling technique and the scrambled

values undergo the Inverse Fast Fourier Transform to give

encrypted time domain values .But, the outputs obtained are in

complex form and thus when they are directly given to the

decryptor section the application would round the complex

value of to its real value leaving imaginary values. Hence real

and imaginary values are obtained from the output complex

values and all the available real values are stored in one file

and all the imaginary values are stored in another file so, that

no information is lost.

Table -1.1: Chart for ASCII codes

http://en.wikipedia.org/wiki/Bit

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 39

5.4. Labview Implementation of Encryptor

Front Panel of Encryptor

The Front panel of the Encryptor module shows the various

security options of login id and the input text space where the

input texts file data. The empty space in the input text option

shown displays the data of the text file which is encrypted for

security purpose. During the execution of the code after

entering login details a request for input text file and empty

files to store the encrypted data. The coding of the encryptor

module is done in such a user friendly manner with

appropriate visibility of display options and proper message

inputs to the user.

Block Diagram of Encryptor

The block diagram of the encryptor module shows the

sequence of coding occurring during the operation of the

application. The following block diagram shown in the figure

includes the extraction of characters from the input text file,

Conversion of obtained data from serial to parallel blocks of

data, scrambling block and saving of the encrypted data in two

files. One of the file possessing the real part of the output

values and the other file possessing the imaginary parts of the

outputs. A complex to polar conversion function is used to

obtain the particular data in two files. In the figure encrypted

part1 and encrypted part2 in the last two sequences shows the

outputs of the Encryptor module in real and imaginary parts.

Figure -5.2: :Front Panel of the Encryptor module

Figure 5.3:Block Diagram of the Encryptor module

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 40

As mentioned earlier in the introduction to the lab VIEW

usage, the programming of any code would clear and

illustrated for the other users using it when the code broken

into individual codes based on their function and designed as

individual VI for each broken code .the individual code

designed is used as subVIs in the other VI which would be

easy for understanding and illustration. In Encryptor module

certain functions are broken and VI is created. These VI‟s

created are added to actual VI. The subVIs added to the actual

Encryptor module VI are:

 1. Design for creation of Username and Password.

 2. Design for scrambling pattern with FFT and IFFT subVIs.

 3. Design for 8-bit FFT algorithm

 4. Design for 8-bit IFFT algorithm

5.4.1) Block Diagram for Designing Username And

Password In Encryptor Module:

The following figure gives the designing of username and

password created for an Encryptor module. The Username and

password functions are designed possessing various user

friendly options. The various user friendly options provided in

using the login id mainly concerned to its appropriate timely

visibility and ineligible logins using default null usernames

and passwords. A sequence of coding has been done for

proper operation of the username and password.

Initially, the input for the username and the password and

maintained at the null string or the empty space where the user

could enter his username and password and the input text box,

which shows the text present in the input text file which needs

to be encrypted, is maintained empty and visible for the user.

The usernames and passwords of eligible users registered are

arranged as an array of usernames and passwords. Hence a

case always arises where the zero index of the array of strings

is an empty string and an unassigned user can login with

empty strings and such a possibility is avoided with proper

coding. After entering the username and password, an OK

button is provided whose operation would decide the further

proceedings into the application. When OK button is pressed

or its state is changed after entering the login id details it

further continues its operation of defining the user whether a

valid one or an invalid one. Until the OK button is used even

though after entering the details there would be no further

action. Once the OK button is used the step executes, where it

is checked whether the username matches with password of In

programming an efficient and secure Login operation various

functions are implemented in sequence of steps. Initially, to

display the username and password empty spaces “local

variable” for each of the username, password and input

text/output text space are created and an empty string is given

as input so that they display nothing. To enable the visibility

of the Username, Password and OK button their “visible”

options are created and set to “true” and the visible option of

text space is disappeared by setting it to “false” until the login

details are provided. In case a user tries to enter an empty

string as username and password no action takes place. This is

implemented by using a “while Loop” and an output of

“invalid user” pops out. For the convenience an “OK button”

is created which needs to be used after entering the login

details. In case of no operation of OK button there would be

no action as output. After entry of the username and password

the details are verified with the database created using “search

1D Array”, input string constants and “Index Array Function”.

When the details match a message “Valid User” is given and

the login options disappear, this done when visible of these

options is given “false”. Later the text space appears when a

“true” is given to its visible option. After the Encryption

process the “Encryption Successful” message is given.

5.4.2: Block Diagram for Designing Scrambling

Pattern

The scrambling pattern is one of the important factor for

security of data during transmission. The scrambling pattern

created by the cryptographer acts as the key which stores data.

The method of implementing scrambling pattern is changing

the order of the variables in a desired fashion, different from

the original order. By changing the position of the occurrence

of the variables is changed then they are said to be scrambled.

Thus in block diagram implementation the scrambling pattern

is designed using the “Unbundle” function.

Figure -5.4: Design for scrambling pattern with FFT and

IFFT subVIs

5.4.3 Block Diagram for Designing A 8-Bit Fft

Algorithm

Therefore in Encryption process, the different type of values

obtained from the character to ASCII code conversion and

serial to parallel conversion are considered as a “Cluster”. A

cluster is set of values of different types similar to arrays.

These clusters formed are of 8-bits. Thus for domain

conversion an 8-bit FFT algorithm needs to be implemented to

convert the data from time domain to frequency domain. the 8-

bit FFT butterfly diagram is implemented using Lab VIEW

functions. Therefore “Bundle”, “Unbundle”,”Multiply”,

“Add” and “Subtract” functions are used. The following figure

gives the block diagram of 8-bit FFT algorithm.

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 41

Figure 5.5: Design for 8-bit FFT algorithm

5.4.4 Block Diagram for Designing 8-Bit Ifft

Algorithm:

In encryption, after the scrambling the data needs to undergo

domain conversion to its actual Time domain. Thus, an 8-bit

IFFT is used to convert the frequency domain data to time

domain data. The following figure gives the implementation of

an 8-bit IFFT.

Figure 5.6: Design for 8-bit IFFT algorithm

5.5.1 Decryptor Module:

The Decryptor module is the other vital part of the application

where the encrypted text files are received from encryptor.

The Decryptor module designed for the application avail the

cryptographer with user friendly and security options. The

user friendly options provided by the programmer include the

managing of the appropriate visibility of the login id options.

The Decryptor model provides the facility of creating a

username and password in particular at the Decryptor similar

to that of encryptor. The Username and Password provides the

security from any other person other than the assigned

cryptographer to use the application. The various user friendly

options are provided in decryptor as similar to that of

encryptor.

There is a possibility that a user different from that at the

encryptor can login with his/her details present in data base to

conduct the process of decryption. Thus different but eligible

users can use the application at the encryptor and decryptor

ends. This adds the feature of Asymmetric encryption to the

application.

The following figure gives the flow chart of the decryption

process .Initially, once the login details are verified the request

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 42

for the encrypted files from the encryptor displays and after

the paths are specified the real and imaginary data from the

respective files is extracted. The real and imaginary data

obtained is formed into a complex data which could be used

for further process. The complex data obtained is let to

undergo a domain conversion from time domain to frequency

domain using an 8-bit FFT algorithm. The algorithm gives an

array of blocks of 8-bit data. Elements in each block undergo

scrambling similar to that of the encryptor. Thus the

knowledge pertaining to the scrambling pattern should be

possessed by respective cryptographers. Thus the application

designed is a type of symmetric encryption along with the

asymmetric encryption. After the scrambling the data

undergoes a domain conversion from frequency domain to

time domain using a IFFT algorithm.

Thus an 8-bit IFFT is implemented similar to that of

encryptor. The IFFT gives parallel data of complex values

containing only real values which are approximately equal to

the ASCII values of the respective text characters. This

parallel data is converted to serial data using a parallel to serial

converter. In the implementation the parallel to serial

converter implemented by using a concatenation function. In

coding, the values are converted to charades using the

“unsigned array to string” function and the shift registers to

store the previous strings and “concatenate strings” for

concatenation of to strings to for the whole paragraph of the

text file. At the end a “Write to text file” function is used to

write the characters into a file.

5.5.2. Labview Implementation of Decryptor Module:

Front Panel of Decryptor Module:

The Front panel of the Decryptor module shows the various

security options of login id and the input text space where the

input text file data. The empty space in the output text option

shown displays the data of the text file which is encrypted for

security purpose. During the execution of the code after

entering login details a request for encrypted text files and an

empty file to store the retrieved data. The coding of the

Decryptor module is done in such a user friendly manner with

appropriate visibility of display options and proper message

inputs to the user.

Block Diagram of Decryptor Module:

The block diagram of the decryptor module shows the

sequence of coding occurring during the operation of the

application. The following block diagram shown in the figure

includes the extraction of characters from the input encrypted

text files, scrambling block and concatenation of the parallel

strings obtained. After the process of concatenation the strings

written into the empty file which was created in beginning of

the application

Figure 5.7: Design for 8-bit IFFT algorithm

IFFT(Inverse Fast Fourier

Transform)

FFT(Fast Fourier

Transform)

Descrambling technique

Parallel To serial

Serial to parallel

Decrypted file

Extraction of characters from

the input file

Input of the path of the encrypted

files received from the encryptor

USERNAME & PASSWORD

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 43

Figure -5.8: Front Panel for Decryptor Module

Figure -5.9.: Block Diagram for Decryptor Module

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 44

RESULTS:

a)ENCRYPTION OUTPUT:

Figure -6.1: Block Diagram for Decryptor Module

b)DECRYPTION OUTPUT:

Figure -6.2: Block Diagram for Decryptor Module

IJRET: International Journal of Research in Engineering and Technology ISSN: 2319-1163

__
Volume: 01 Issue: 01 | Sep-2012, Available @ http://www.ijret.org 45

FUTURE ASPECTS:

The application possesses immense scope for further

development. The development relies on the factors providing

security for the transmission. The application can be further

designed for word documents and other types of text files (pdf,

word document, etc).the security aspect provided by the

scrambling pattern can be enhanced by designing a higher bit

Fast Fourier Transform (FFT) than 8-bit which needs a higher

bit scrambling pattern. At present there is possibility of 8! i.e.

40320 scrambling patterns for example if a 16-bit scrambling

pattern is developed 20,922,789,888,000 which make it highly

not possible to crack. for using a 16-bit scrambling pattern a

16 bit serial to parallel conversion should be developed. In the

present application the encrypted data is split into two files for

real and imaginary values thus the data can be split into more

than two files this feature adds to the security i.e. in case a

hacker is in possession of one of the file cannot crack the

original file thus when number of split files increase the

security. The proposed Encryption technique can be

implemented for audio, image etc inputs.

CONCLUSIONS

The application designed provides a very high security in

transmission of a text file. This application can be used as an

induced encryptor in programming scenarios to secure vital

codes and secure transmission in research departments. the

high level of security is provided by the scrambling patterns,

user logins, domain conversion etc. the future scope of this

application relies the development of higher order FFT

algorithms which proportionally increases the possible number

of scrambling patterns for higher security.

BIOGRAPHIES:

[1] http://www.honeypage.com/SPEECH_ENCRYPTION_

AND_DECRYPTION_USING_DSP_PROCESSOR.ht

mll

[2] Fast Fourier transform based speech encryption System

- S. Sridharan, E. Dawson, Goldburg .IEEE

PROCEEDINGS-I, Vol. 138, No. 3, JUNE 1991

[3] „LabVIEW for Everyone‟-Jeffrey Travis, Jim Kring

[4] Encryption using Fast Fourier Transform Techniques –

S. Sridharan, E. Dawson & J. O‟ Sullivan

[5] LabVIEW for Digital Signal processing and digital

communication – Cory L. Clark

[6] Digital Signal Processing – John G. Prokais

[7] “Cryptanalysis of frequency domain” - B. Goldburg, S.

Sridharan and E, Dawson,

Volume:140,Issue:4,Publication Year: 1993 , Page(s):

235 - 239

[8] “The handbook of real-time Fourier transforms,” - W.

Smith and J. Smith,.

[9] “Fourier transforms: An introduction for engineers,”-

R.M. Gray and J.W. Goodman

